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Integral sstimate for an elliptic system of partial differential
operators with mixed bouridary operators

Hyun CHUN SHIN

1. Intriaetion Let G bz a bounded domain of class C™ in £,. We denote its
closure by G and its boundary by 0G. Further, let I be an n-2 dimensional
manifoid of class € on dG which divides G into two. comp’)nents NG and 899G,

A point of G is denoted by x=(xy, -+ ,x,,) We set
- 1 a wsesesesRENP AR ——];- —hi—‘
D“(T ox ° SR> )
o (19 N (L 8\~
D —( i 0n ) ( i dx, )’

where n=(y, -;-, p)isa multi-index and ul =;zi+---+y,, is the order of the diffcren:
tial operator D% Consider in G, a system of differential operators ‘

C ta(x, D) O
1 o, D)=( . --.a - D))
T N )

ay(x, D) =32 cu® (DD, k=1, N,
ln1=2m

o ® (%) being of class C*(G) together With. systems of boundary operators
w2 FO(x, D)=(bs (x, D)),
by, 29 (x, D)I;‘l—‘ é&' y.;?u Wb (D, po =1,
i=192; j:l’ '"’Nm; k=1, "',N-
Wé assume that all the ﬁu"':i"»"’ (%) are of class C*(G). And let
(ay/ (x, D) ,
(1.3 o (x, D)= ( )
a N(x: D)
L9 N ﬁ“"(x D)= (b;,k"”(x, oy,
i=1, 2; j=1,+«,Nm; k=1,--, N, denote the characteristic parts of the eperators

(1.1) and (1.2) respectively. The. characteristic matrices of (1.1), (1.2) are denoted
by @’ (x, &), F(x, £ and F(x, £).

Now, our aim is to give aft integral estimate for the system (1.1) and (1.2)
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under the following assumptions I—-IV (c.f. Theorem 3.2). Apylications of this
estimate to the existence theorems for the correspondmg dxfferentlal equations will
be discussed in the future. " ° S -

(D The system (1.1) is elliptic, i.e. for all x in G, and for all non zero real

vector &,
1.5) oty (x, £)5£0, k=1, N.
In the following statements 7(x%) = (7129, -+, 78 (s%)) denotes -a real :non zero
vector tangent to dG at 2°(on G) and v(x®) = (i (x%), -++-e » Un(2")) a real non zero

vector normal to dG at x° (For simplicity, -we often suppress x° and denote these
vectors simply by 7, v respectively).

(II) The system (1.1) is properly elliptic, i. e. for every 2° on 6‘06 =1, 2
and every pair of vectors (7(x°), v(x®)), the polynomials (in complex scalar 1),

(1.6) ay (D =a’(x% t+n), k=1, N,
have exactly m roots nz, s* (3% 7, 1), $=1, »m, With pOSlthE lmagmary parts.
Next, we set : e
(1‘ 7) ak+(‘n) :‘-g;(ﬂ_'ﬂkr sf(xo’ T, U))’ k‘:l: '"'"! N’
(1.8) Bjo s (D=, s (20, T4, '
i:l’ 2; j=1,""",‘Nm; k_——_l,,- ----- ’N‘

(IIT) For each ° on 9’G, #% (x, D) complements cz(x, D), i. e. for every x°
on 899G, i=1,2, and for every pair of vectors ((x°), v(x")), any relation of the
form - ‘ 7 ' o

Nm ’ - '
1.9 246, k”"(ﬂ)~=—0 (mod ak“(#)), k=1 ------ , N,

in which the 2;are complex constants independent of 7, 1mply that 2.,—0 ] 1 Nm.
Next, let us write,

/ P
1.10 Viim= b Bs‘irishys-1, - o N
[_—_1, 2;:]':]_’ .-..-."Nm; __k:l, TLTIEN N.
Further, let

.11 wM=5 055, 1Y
o= 1, ------ S k= 1 ------ . -'Nd» .

Evidently, g,%:1P, o, depend on (4, T(x") u(x“)).
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(IV) For each x° on II and for each vector u(s%), there exist (Nm)® polyno-
mials in T(x") namely

L1 &, (1) = Zgu,n (x°, ,J)Tn §, I=1, e, Nm
tul=p, B+ —
such that
(1.13) Re)_—_,' el’1(7)<22 B:WiP e, ¢ 0(%2}; Bs @Ry, 1(k’)>0
for all complex vectors Q(”) =(a)o("’, cerverennn, Qa1 ®),  B=1, ceeeeenns ,N, for which
Z'p (Uk)a)s l(k)zo’ k 1 ------ ,N’ 0':1’ ------ s M,
‘unless G® =0, k=1, N,

We remark that each e;,;(7) is homogeneous in T of order y;® -+y,®—1." Two
boundary operators of typs (1.2) having the property (IV) are called “compatible
with respect to (1.1) on II”.

. The complementing condition (IIT) is a special case of the one introduced by
" Agmon-Douglis-Nierenberg [3]. The compatibility condition (IV) is a generalization
of those of Schechter [8], [10].

2. Preliminary Results. In this section, as the first step, we consider the
problem in a hemi-sphere. For convenience, let us change some notations mtroduced
in section 1. We denote a pomt in E, by

(xv .}’) —(xl- "":', Xn-1s y) or (S’ 7I)=(Sh ";"" Eﬂ-—l’ n)s

and correspondingly, we set

(L2 ... 1_3d _1 3
D= o b b D=t e
For a multi-index p=(th, +seeee ta-1)s &%, D are defined as before.

Now, let
Ze={n 9|15+ =R, 520},
azz={ 0| 121's”?},
0.5e={Cs »| la1*+y=R, yzol.

F N(Xp) stands for the collection of all vector (N-) valued functions of dass
C”(SR) which vanish near 8,Yz. (Instead of F(¥z), we use ¥ (Z’R) ) For a
function # of class F (¥g), we define
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@’ L lulp= () zrfxDx”D “ul*dzdy. "
If U= (s, voeee,un), V=(v1, -+, 0n) are both of class 5¥(Zg), we set
(2.2) UV =g teeeeeee +quN, \12=U-U,

W, V=W, V)s.=[U-Vdndy,

g

@3) U1 = (U= S ha st W= (U )= 51012

The difference between (U] and |Ule=|Ulle should be carefully noted.

The basic relation between the norms(2.3) is the following well known lemma.

LEMMA 2.1. Let u be a function of class % (Xr). Then for an _arbitrary pair
of integers p and t, for which 0=t<p, and for an arbitrary positive number ¢,
-there exists a positive numbzr K (&) independent of u suck that

@49 lleefle= sl'uﬂp+K(€)llullo.
" Next, let % be a function of clas ¥ (Fr). Extending u as identically zero

out51de ZR, we put

#(E, ﬂ)_fe""f"*””u(x Ndxdy, u(é)— e 'f“u(x, 0)dx.

12l oo

IFU is of class¥ N(Zr), we define U=y, ). If u v are of dass
F (¥g), and if p is non-negative and real, we define
2.5) <, 0> p=<tt, > pom= ISI”u(é)v(E)dé

<o

. v <u>p=(<u>m.xg E=u, 4> p

It is clear that (2.5) defines another norm(called boundary norm) on 5" (Z’R)
The following lemmas are proved in [7].
LeMMmA 2.2, If w is of class ¥ (Sr), we have

@2.6) #©=—-LA" a¢ nan.
LemMA 2.3, If u is of class F(Zr) and p a non-negative infeger, then
A ) <ﬂ>p+% éff”ﬂn?ﬂs»

where ¢ is a positive consiant independent of u.
Using Schwarz mequahty, we 1mmed1ately have the followmg
COROLLARY 2.3.1 If u, v are both of class F e md 11 zs a nan—negatzﬂe
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integer, we have
(2.8, Lo <#, U>I+% =cllullprillof po,

¢ being independent of u, v.
Let us now consider the systems of differential operators

2.9 o2( Dy, Dp:(m(Dx, Dy, 0 - )
\ - O ' .Q'N(Dx, y)
ap( Dy, Dy) z:an,s(*>D,"Dy, k=1 -, N,
and
(2. 16) B (Dy, D,) =¥, :(Dx, D)),
bj, (D, Dy) =2:'/3a, S DAD S vz,
] ]_ e Nm k 1, ';"",~N,

where @, ® and ,8;,,‘1’ b are complex constants. For each £, we write tbv ch..rac
teristic polynomials of thes= operators as follows:

@. 11) ag (ﬂ)(:é’(“‘;:’gﬁ’ s(k)£ﬂ>723> :::Z’:' as(k) (E)”,'
(2.12) . éi: 11¢)] =)§: R &,
f=1, e ,Nm; k=1, e, N.

We further assume the following condltxons

f’. For every non zero real vector (&, 17) @, (&, ) #~0, (k 1, eeseee, N,

II’. For each non zero rea] vector E the polynomxal ar() =0 has exactly m roots

T s*(€) (s=1, -+, m) with positive imaginary parts (k=1, -, N).
Set
(213 at ()= II =1, * (6D, k=1, e, N

IW. For each non zero real vector £, the relations
Nm .
‘Z;'Exll b5, s (=0 (mod a; (), k=1, - N

with constant 4; imply 2;=0, j=1", Nim. "
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Now we shall prove the following theorem which is also proved in (381 by
different methods. ‘ '

THEOREM 2. 1. If the operators-(2.9), (2.10) have the properties ¥, 1V, 11V,
then for all U of class F ¥(Zg), there exists a positive constant ¢ (independent of
U) suck that h '

) - Nm ' N . 2
@19 0 e 10r(Di DY Ui+ S2(< 2 b 4Dy DY s> e3) +IVE):
Proof of this theorem depen'ds on Fourier transforms and homogeneity of
characteristic polynomials. For later use, we make a few remarks on these.
If U= (uy, +oerr ,#xn) is of class F N(Xg), we have
. PN
2:(Dx, DYur=ar(§, Mis + 12 N O S 7" Dy

Hence if we set

(2.15) 0.5 (=0 @) =161+ Df% 220, -oeeer, 2m—1,
dk (Dx, ADy)uk:ak(Er n)ﬁk_'"ah k:l, """ » N’
where ) . ’
2 16) ak:é:' a® (E)é' 7t €] ig“l(k)’ B=1, verens A

Let us next set

(2.17) . € =181 € ) =§ 0: P (O
" k=1, -‘----':,N; G=1, eweree, m ‘
" Then we have .
“ 2.18) O ‘é’psmh(@ﬁ%:pl @B (E)ﬁb’"*'é':ps @B (E)B}E'{;k
=F D&, Dilp+1, 9,
k=1, -eeee, N3 G=1, oveeee, 11,
where h
(2.19) 7 = 150,00 (6) £ €100 b,
B=1, ceeive, N3 =1, cverer, .

Furthermore from Lemma (2.2) it fgl‘lqws that
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18l dliergmias, -

ot

@ 2m e’ 2m
(2.20) f 20,00 () D, Ty dn= —m'(z: 0s 7B (O 1°0,+® )
i E’We shail Fointer r’ﬁgk'e usﬁpﬁfhfﬁe folfowi'ﬁg éxs Le*t us' I’egéﬂi
. Ssl. A e pooromeny ad U s Lo Tiiraa e 1e, =
. ':"it"' oA it %(a) “ﬁk(a)ak—a¢rk(ﬂ [ B 2 K ‘ ‘
as polynomials in 7. Then we hayve « .. RS Sy e el e e
LemMa 2. 4. deg ¢, g 2m—1 (ip 1) qnd
l IR '
@21) S B = ri(Z 0, P 16104
B=1, e, N3 g=1, veeven, pt, RPN

- “where the integral is tuken over the real' axis in the Cawchy printipsl "i{alue:szﬂse.
Next let E be a fxxed real non-zero vector.

: Ve et e g ’:-«1,»‘ e
lf Q(k>~(cao<"> e, o1 D), k=1, e N, are comglex.vactm:s, -we have: | .,
P L T - : w4t Aw o my

LEMMA 2.5. In order that IAibj k() = 0 (mod ak"(r;)) k= L N,
= s wene ot
skall‘ ;"7np{y ,2,-=O, j::l ------ Nm zt is necessary and suffzczent that
SR e gg,g (],k)(f)ms 1 0 ]:1.: --77..,'1‘_\[_m, ot e

p @k (E)w 1<k>_0 k=1, sorees NG =1, reee m, -
o i 4 : . ; [ S
imply QB =0, k=1, reer ,N. N . _ ) »
LEMMA 2.6. If h(E, 1) is a funclion which is homogencous of order’t in (&7,
then , ) .
3 oyl IR A *
e ., 18- f e h(&n)dn
faten,h o F R e N

is homogeneous of order i+1 in & whenever the integral in the right side exists.
"The abéveé" three lemmas ~will be* pmved it the Appendix.
Let Q=(cy, -+ cop) A= (21, ~~~~~~ lq) be two vanable vectors. Then we have

the followmg‘ lemma Whlch is* of trlvial nature. TAE I e St v b

LEMMA 27 Let h(Q A) g(Q A) be contmuous functzons of Q A whzck are
both komogeﬂeaus of order s with reSpect to-Q, . énd of ozder t with respect to /a
If h(Q, 0 for 254G, A#,O,!then there exzsis;a positive number ¢ such that

!7(Q,A)]§C‘h(Q:A)' . e 24E T vy e M
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fok ol . end A
In the following computations, we shall ordinarily omit writing the arguments
& nof ch:trax:tnnsfxc palynovmals The operators will be denoted with D, D,.
PROOF of THEOREM 2. 1. Let U be of class F ¥(Zr) and, for any multi-index
¢ and positive integer s such that |g|+s=2m, let

DSDyS 0 :
(222 g(Dx» Dy) :( )
= 0 DBy

Our aim is to show that |
o~ N+ V N A ~
@2 [100Ds DY+ 5 18127 b oD Bpws*—a fiF (B DU 2 0,

with some positive constant ¢ ‘which is independent of U. Thz desired result
would be obtained if we simmed: up (223) over all possible choices of & GD;, ‘,)
for wh,xch tul+5=2m and mtegrate agam thh reape~t to S In fact, lnvokmg
Parceval’s relation, we obtain .

- L Nm N . S R
l6e( Dy, Dy)Ullz+§ < L5 4Dy D)ur > -3 Z1U |3,

Hence applying Lemma 2.1,” we would have (2 14). To prove (2.23), we first

consider the foIlowmg Let
Un A(*)(E) (zlxk)(g) ...... Uﬂ(;)) k=1, .o N,

be 2 functmn of 5 to be chosen later. Then we have

} (D, DpU[ —):"amk‘raﬂ’

N m o — 2 M e, £
=£{| akﬁk.g.ak__a_lk-g 1B @ +2Re§ Zg""(:‘:—_‘,'ps“’-"’ (g)m)

vamery At (B ar—airi)— [~-»>:::2,cwm{ !

where we made use of the felat.;qg (2 }8:), Noting ;hg,t fg;- each fixgd _E, nDag-

A\)_aﬂ;,r;ﬁ") is the e:_cpressim de-mted by q,,('” in Lemma 2.4, we have

f L (B0 @)=~z £ 0.0 @16 B h),
k=1, . N; g=1, reerer , M.

yowh

Hence, using (2.20), we obtain
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[|@Ds DY | dn=51 [ |- Eo e o

+4Re(—i) S T (2 0.0 (©)1€1°0,.*) J)——.S:z\wm “an)

Now let us pick
Ao (@) =—2mie £1(Z50, 0D @16 10,1® ), k=1, s N a1, oy

¢ being a positive constant to be chosen later. We then have

2

@.24) 1D DU =S| f|estit ma | dn+ o |2

._.}'_‘\:"%I @2y tlz){ dﬁj’

Ay o=t

where we have set
mkzak“_;k—ﬁ' Zﬂ(k)b@w)n k“_"l’ """ » N!

Now for each #, the last tw3 terms in (2. 24) are quadratic in A®. Further-
more, from Lemma 2.6 it follows that each coefficient of Ae®AB g continuous
and homogeneous of order —1 in &. Hence, by Lemma 2.7, we find a posmve

constant € such that

- 2
=
Inserting this value of ¢ in (2.24), we have
. ) ;
@) Ji@w. by r>z’j]a,uk+mk] T =% <k>_]}

This i§ th= first step of our estimate. Next let us consxder the sum of the
first two terms of (2. 23). Since

b,l’ k(D.u -b_y)uk—'zlgr‘t s(l’ )Eﬂﬂ s“k E.gs("k) CE)lEISOs 1

+s=2n-y;

we tiave

to- - " r‘, ,“'i'

J [52(0,:, D) an+ e | JE=0Ne> Dy)m,]

A—l =4 o=

2.26) | jl?kuﬁmkj dn+ Elfl EZ‘\/_'(_“

£ e Eam@ua.s|
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The last two terms in the, right side of (2.26) are quadratic in’.@%j: each
coefficient of 6,%8,%® is continuous and homogeneous of order 4m+1 in & Hence

we can express it in the form* < SR -
. N 2m-3% " " . ‘ .' .
(2.27) EEH”,( 19,0 8,®, N

where cach H,,,® ) is continuous and homogeneous of drder 4 +1 in &. Further—
more, from condition IIT” and Lemma 2.5, it fo]low,s that .

e g A
2.8 bz;;:ﬂs.,@es@@,gvo IR
unless ¥ ==, k L, =+, N. Indecd, if (2.28) were zero, each summand in the last
two terms of (2.26) would vamsh However, ‘the relations Ae® =0, E=1,eon LN
541 (XM
g=1, e, m,are equivalent to ):_,'ps"””(é)cos 1“’-—0 R=1, veeeerene N a=1, e, m
where we replaced 1€1%6:1% by - ;“” R
.+~On the othesi hamd, the- wanishing-of the !ast term of (& 26) ‘impHes that
S"E,B u,k)(é)w W0 L e N : L
. Y N T LA _n" .ot FER T .o . P TET T
Hence f.rom Lemma 2.5 we have @® =0, k=1, .:c..., N. P
Finally, we proceed to complete the proof Let ¢ be a posmve constant to be
choosen fater. Then . .: T
N ..‘ iti v ¢
(2.29) fJOZCDx,Dy)Ul +Z’I§‘izu, q; ,k(p,,,py)u,, J*cQ/JQ/’(D,,, pU]d;y
. TN X ; h o
‘ ,,g" f] ,afuk—i—m,h} d’?'rkf_l:;z Hs:t":fst?ﬁt‘k’*coﬂj [gkuk+gkl dﬁl
where in the last term, we set S BN NN SRS BB
.9)&*5“7] Clul+$r2m), gh“f“g’y“’lﬁl’@:—a.‘k’\.. B==1, veeeee » N.
Settlng f,&-—lﬂk}z-'(fo'gjlz k=1, eereen ,N we rewrite the right side of (2. 29) as
follows:
LW A :
(2.30) EEHsyl(k)esm@t(k)+Ef{(]ak[2“co'gk!2)luklz [mel®

~cq lgﬁ I"2 + ﬂé@ (d’kfm’— cog;.ga) ﬁk}dﬂ=§ )’:__,'DH ot ®G,HF,®
. R - =L &=

+éf {f : I;;'*'E%(é K;mk;"co%q—kgk) [él*—;:— @xZh— Gtk lz}d 7
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’N . 2
S nwl SURLES i [ S (S DI

‘Co):'{ - ‘(Ikgk_gkmk dT]-

Now, using lemma 2.6, we can express the last term of the right side of
(2.30) in the form

(2.31) )_., ):' L.:®0,50,%,

=1 8=

where ecach L,,* is continuous and homogencous of order 4m+1 in & However,

N 2m-1

since Z’Z‘Hw 10,9 has the same property and is positive definite, there exists

1 8, f=

a positive number &, such that

2n- 1 N 2m-1

(2.32) Z = H,0,08,"b = OcOZZLs., 10s86,%,

=1 s1=

if 0=¢,=e,. Therefore, if we take ¢, so> that 0<co<min(e;, &) in (2.29), from
(2.29), (2.30) and (2.32), it follows that

~ Nm TN 2 ~ oo L
f |CU(Dy, DU+ 5 61557 g@.k(z)x, Duy! »cof \F (D, DU 2y

=Z- “*E:_—] %:’He.: *g, g‘k)‘i‘g’ffklﬁk‘*‘".—flk" (@xmi—cogegr) |’dn>0,
Thus the proof is complete.

3. Integral estimates. In this section, we consider the system (2.9), together
with a mixed boundary system.
Let IT be an #-2 dimensional manifold on 4;X¥% which passes through the origiz
and divides .,z into two components 0,V r and ¢, 3%.
FN(Xr II), we denote the functions of class # ¥(¥g) which vanish near
IT. Now for a function # of class % (Xg, ), we put
4 (w(x, 0), x € 0,93 Do
w' (x) = . . C o atne
10 24019 X, i=1,2,
If u, v are both of class ¥ (Xk, I), we define

N . A
<u, >, =u, 0>, a,<'>zR:;f15|Zﬁumvmd&
1 <o

(Ku>, )= (<u>p 00500 =<u, u>,%, i=1, 2.
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Next, let us make the following observation.

If k) is a polynom1a1 in & and if #, v are functions of class f g I, we
have

Jr©a0 @50dg =[W(DIu® (2))0® (dx=0

151 131 <o

and a similar relation satisfied by #% and 49,
Consequently,

Ju®i®@de=[h@ @ @59 ® +49 @5 @) )dt.

11 <o 1§i<es

If, in particular, k(f) is a homogeneous polynomial of order #+s in &, we -
have

[r@a@a@ae =2(1h@ 17120 @178 [ @ 1100 @128
+2f 1) 17114 @) %€ [i4(@) 1710 ©) %€,

Since lk(é‘)lﬁ'“:, lh(E)I:% are homogeneous of order 2s and 2¢ respectively,
there exists a_positive constant ¢ such that
VEIRE F=clEl™, ZI@ F=cIgl™

Therefore,' we have'
fr@i@ios | se{ <o o> 0t <> >

Usmg the trivial mequahty labl<e|al +—lb!2 we finally obtain

@D l f IQHGHGY <c{e<<u>,<2)>2+e<<v>fm>2+m—<<v>,ﬂ>>*}
o ' +-(<v>,(2))2 .

ity

where ¢ .is an arbitrary positive constant, and ¢ is independent of u, v. We also
remark that if p is a non negative mteger, then

(3.2) <u>5: 19 Zellull poge
| <#, 021012l ull palltllpr, i=1, 2 .

¢ being independent of ¢, 2. , :
Now let «z(D,, D,) be the operator @2.9. Let further
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(3.3) 79 (Dg, D) = (04" (Do DY),
bj.k(i)(Da-, Dy|) Ii__sz .BUvs(i’j’k)Dxu-Dys, l)j”’%l,
#lts= ”'-L/,(')

i=1, 2; j=1, 00 TNm; k=1, 000 » N,
the Bu,'+/+¥ being complex_ constants. As before wea shall express the characteristic
polynomials in the form:
G0 b (6. 1) =55 B 1IN (O
In addition to the conditions I, II", we further assume the following condition

which corresponds to IV of section 1.
IV’. There cxist (Nm)® polynomials

ejyl(f)’ j:lzly """ ,Nm,

which arc homogcneous of order v;'V+u,%~—1 in & such that, if £is a non-zero

real vector, then

Nm N 2m ) N 2m
@8 ReEZ e 55 53 .00, %) T 2 6,5 (w1 )>0

for all complex vectors Q¥ =(w, ™, «--. s O ), B=1, ereene N, which satisfy
2m
(3.6) 37 00 (w1 =0, o=1, e Jmi B=1, e ,N,
s=.1
unless Q% =0, k=1, e ,N.

We recall that 9,79 (£) are the coefficients of #,7 (¢, n){c. f. (2. 17)]. We shall
prove the following:

TdaeoReM 3. If the opzrators (2.9), (3.3) satisfy the conditions U, 11, 1V’,
then for all U of class FN(Zg, II), there exists a positive constant ¢ (indepenient
of U) such that

' N {2 1 2
@7 W s < c{ lee( Dy, D) Uli+ i::( <obi 4 (Da Dus> b1

Nm N
+ 25 < 0™ (Bry D> Py 141U R}

bJ(?)

Proor. Wc shall show that for all U of class # ¥(¥g, II), the following in-
equality holds.

~ . Nm N oA~ N =
@8 [|o(De, DU dn+ ReIZ €4,0(8) Shin™ (D D) w5605 (D D)

~ef|F(D, DUy = 0

Jd, ¢, being positive constants to be choosen later and #(D, D,) being defined by
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(2.22). If we integrate (3.8) with respect to £, using Parceval's relation and
(3.1), we have

Ll 2

1Dy, DU 1 3+ 10 e <35 0304 (D D> Por-3)
N 2
+5(<E bl;k (2)<va y)uh v (1)———) —‘<<E bpku (D:C: Dy)uk>u m—-—)

+%<<é birs® (Ds, Dy)ule> f,?m»}) }’Cz[Ulzm_?_O

Taking ¢ sufficiently small and applying (3.2) and Lemma 2.1, we obtain the

desired result.

Now let us set

] Rez 91.1(5)2 b]!k(l)(Dx, Dy)ukz bbk( (-ny y)uk

=RexZ 15 2 B0 @16104%) (5 5 55 @160,
Then from (2.25), it follows that

. ~ X Nm N A X
3.9 ﬁ@ (D, D,,)Ulzdﬂ—l-Reé‘ﬁE'ei,;(E)Z’ bV ( Dy, Dy)ukzé; 01,2 (Dz, Dyuy

= 5[ asi+ mal -+ — (g5 331 12+

A=t o=1

Since J is a quadratic form in @%, g=1, .. ,N, and each cocfficient of 8, 08,®
is continuous and homogeneous of order 4m+1 in £, the sum of the last two terms

in the right side of (3.9) is expressed in the form

le (ﬁ)[2+5] ZZK“(;&)OS(M@ m

”
=l g1

Mz

(3.10) 1 l

Ed

where each K, is continuous and homogeneous of order 4m+1 in £. Consequ-
ently, ‘wé have
~ Nm N A~ N X
f oe( Dy, D) U 1 %dn+ Retf};: xej,l(é)z?:: bV (Dy, Dy) ”ﬁ%lbh ®(Dw Dpus
~¢o[|F(Dx, DU %dn

- N ~ N 2m-1 " — N ~ 2
= > [last me | dn+ 30 22 Koi 0,98, —co3 | gitin-+4 1%,
A== k=1 5,8=0 k=1
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which correspond to the inequality (2.29). Hence, if we show that(3.10) is positive
definite, (3.8) follows in exactly the same fashion as the last part of the proof
for Theorem 2.1,

Now if €0, @®#0, k=1, ..., N, the sign of the range of (3.10) is deter-
mined by the sign on 7, the set of points (£, @, ... , W) in 4mN +n-1
dimensional Euclidean space (£ being real, @® being complex vectors) for which

[EP2= @MW |24 eeee +1@WNE=],
Let 77 be the subset of 7 on which

N m

kz;{%[)_q(k)l?:ﬂ

i.e.

2m
gﬂs(”’k}(s‘?)(vs-~1(k’=0, k=1, eoenne N a=1, e > M,
where we replace 18150, by s ¥
Since />0 on 77 by condition 1V’, there exists an open set P containing 7 on
. N ”
which J>0. On the other hand, on thc compact set 7—p, >>3"12,%12>0. Hence
h=10=]

we find a positive constant & such that

N m
I B 120
on 7 —P. Inserting this value of J in (3.8), we have
1 NSt e 1 ST e
8'6[ gg[lﬂ l +5]§ 28!5[ Eglzat)l>o

on 7—P, Thus (3.10) is strictly positive and therefore the proof is complete.

Now, we are in a position to deal with the original problem (1.1), (1.2).
Using standard methods of partition of the domain G into appropriate subdo-
mains and with the suitable modifications of the norms concerned, it follows from
Theorems 2.1 and 3.1 that:

THEOREM 3.2. If the operators (1.1) and (1.2) satisfy the conditions I, II,
III, IV of section 1, there exists a positive constant c¢ (independent of U) such
that

(3.11) Wiz Se(lorCx, DI+ 25 £ <o (5 D> 9, 1) +1U)

Jor all U of class e5(G ,II), where ¢¥(G,II) denotes the class of vector
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(N-) valued functions of class C* which vanish near II.

4. Appendix. Here we shall prove Lemma 2.4, 2.5 and 2.6. For this purpose,
we prepare the following:

LemMa. Lef () be a polynomial (in a complex variable 1) of order t with
leading coefficient o end having no real roots. Let further q(n) be a polynomial
of order t-1 whick has all roots of o2(q) (and with the same multiplicities)
whick lie above the real axis. If B is the leading coefficient of q(n), we have

8 q(n) B
fﬁoz(n) an=-fi~g
where the integral is taken over the real axis in the Cauchy principal value sense.

Proor. With R>0, let X, 0% 0,3z 0:3r ke as in Section 2.
tion, we have

o) g (9(0) cam) g
Jaay= Lty @)y 1

By assump-

On the other hand,

[t o o)

@2%p

Letting R—oo, we have the desired result.

Proor of LEMMA 2.4. Since the proof of Lemma 2.4 is the same for each &,
we shall suppress the index 2 Now for each fixed &
(2.16), (2.17) and (2.19),

, we have, from (2.11),
2m
a(n) =22 e,
2m 1
a(m) =§ (24} El: Wy,
2m
g(ﬂ) (72) _..._E; Os w)ﬂ(s—l)'
2m s-1 .
r =§2 0 lzﬂﬂs-l_lwf—l’

where we have set |£|/60;-1=wi-1.
Thus we have

=1

¢ ()= <§::__,’195‘”’ 775_1)<% Cf:é ﬂ"—’wl—1>“'(§ OltTIt)(:Z:Z—z\‘Psm :"l—;":l’?s_’ _1031—1)

M?

I

2m 2 -1
=S ma(r g on— o)
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2m f om s—1
+p1 (m(g o ,Z=; 77’—1601—1>‘050<§ Os (2] ‘It;lns—-l—lwl_l).
Since the orders (with respsct to 7) of the last two terms in the right side

are <2m—1, we consider the first term.
If t>s—1,

t $—1 t
775—1’2:1 77{_1101—1 —ﬂtgﬂs_l—lwl—l — g 77”3—’_10)1—1-

Hence cach summand in the first term corresponding to t>s-—1 is of order

i—1, (Z2m-1).
Similary, the summands corresponding to s—1>¢ are of orders = 2m—2. Thus the

first part of the Lemma is proved.
It is also clear from the above computation that the term involving 7*"7! are

obtained only when #=2m, I=s. Hence if we collect all terms of order 2m—1, we
have
azm(plmwo‘*‘pzw}wl'*' """ +szm0)zm—1)7?m"‘-

Now, ¢ (n), q(7) have all the properties required in the preceding lemma.
Therefore, the conclusion follows at once if we compare the coefficients of the
leading terms.

ProoOF of LEMMA 2.5, As before, we put

a*(M=a* (€, 0,

2m
b =528 1) =§ Bsahp,
LM =RAME N ‘—‘é 0P,

E=1, oo, Ny G=1, vooeee, Ny G=1, eorene, 11,

Noting that 7,V (@ =I£I™'e,*(n) and that £ is fixed throughtout the discu-

ssion, we see the equivalence of the following three statements.

Nm
(l) 1?—:1: zjbjrk<77)50 (mod ak+(7?)), k..—.]’ cisees R N'
(with complex constant A;) imply A,=0, j=1, - , Nm,
Nm (NLEym
(2 f::i Zjb,-.;,(77)’=—+(-“§‘_%j,+,el B, U NHR=Dm b M =0, k=1, e SN,

(with complex constant ;) imply 4;=0, j=1, - +2Nm,
©) 32 8,9 3 25, 40,4 -0 =
=1

J=(NLE-1ym>1
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(with complex constant A;) imply 2,=0, j=1, =, 2Nm,

In order to see that the first statement implies the second, let us assume (2).
Then (1) follows immediately. Consequently by the first statement, we have
A;=0, f=1, reeeee s Nm, and

(N +B)m
o TR IIRD=0, k=1, .
Since, for each &(k=1, - » ), the polynomials 2, (%), =1, +ero »m, are linearly
independent, we have A;=0, j=Nm-+1, -+, 2Nm.
Conversely assume (1) holds. Then, noting that the orders of & (7)=2m—1,
we obtain (2) with suitable constants 4;, j=Nm+1, - ., 2N'm. This shows that the

second statement implies the first. The equivalence of the second and the third
statements is obvious, Furthermore, if we compare the coefficient matrices of (3)
and (4) below, we see the equivalence of the third statement and the néxt one
which is the conclusion of Lemma 2. 5. '

N 2w & 2 .
“ Egﬁs‘f’ 'Ws1P=0, j=1, e, Nm,
m
305w, P =0, g=1, e, m; k=1, o, N,
sx=1 - . .
(with complex constant 4;) imply @® =0, k=1, s N. R

Indeed the coefficient matrix of (3) is -

3 ‘310.1) ...... B, W=D p;“"’ ,,,,,, 0, \
ézm(l’l) "’.Bim(m"n Pz:m“’]) "'sz(";m 0
P TN X .
lg.mtl,ﬂ) veeBagmD |
ﬁ:I RNyt 0 p;l WD a0,
L Bam N o By p:z.u“ﬂV’ ,,,‘;m(m,m )

and that of (4) is its transpose.
Proor of LemMMmA 2. 6. Taking a scalar z, let us consider

@ O=[ hE ma
If we set n=2{, we have

Pay=2[ hGat, 2Dl =2[" h(E i
=219
Thus the Lemma is proved,
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