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ABSTRACT

The gain of ternal energy of a star cluster caused by the tidal attraction of our Galaxy
is examined. Expressions are derived which include the effects of a two-body orbit and

internal motions of the cluster. These formulae are compared with previous results based

on (i) uniform rectilinear motion and (ii) neglect of internal motions induced by cluster
gravitation(i.e., impulsive approximation), and it is found that these simplifying assump-

tions generally introduce significant uncertainties.

[ . INTRODUCTION

If the relative velocity of an encoun-
ter between two stellar systems is much
larger than their internal motions, the
approximation of uniform rectilinear or-
bital motion is generally adopted for stud-
ies of tidally-induced energy transfer
(e.g., Spitzer, 1958). It is often the case,
however, that the mutual gravitational
attraction between the bodies cannot be
ignored and the actual relative orbital
motion must be taken into account. This
was done by Alladin(1565) for the spe-
cial case in which the internal motions
induced by cluster gravitation are neglect-
ed(i.e., the impulsive approximation).

The purpose of the present paper is to
derive expressions for the tidally-induced

energy gain allowing for both the relative
orbit of a two-body system and internal
motions.

In this paper, for definiteness, the sys-
tem consisting of our Galaxy and a star
cluster is discussed. At the outset, we
make the following simplifying assump-
tions: (1) The Galaxy is approximated
by a point mass. (2) There is two-body
motion. This is valid when (i) the radius
of the cluster is small compared with
the distance separating the two systems,
and (ii) the change of orbital energy in
one revolution is small. (3) The cluster
suffers no mass loss. A refined analysis
of the dynamical evolution of a cluster
may have to take into account the or-
bital energy changes and mass loss, be-
cause these effects reduce the orbital size

and alter the structure of the cluster.
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In this paper, the equations of motion
of a star in a cluster with two-body
orbital motion are derived in simple form
(Section II). They are applied to the

e
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FIG. —fhe orbit of a globular star cluster. The
Galactic center is at 0, the cluster center at
o’. The fixed coordinate axes (X,Y,Z) and
(&,7,0), and the moving coordinate axes(z,

v,z) are shown.
derivation of expressions for the tidally-
induced energy gain of a cluster. These
equations are specialized to the case of
the impulsive approximation, and com-
pared with results for uniform rectilinear
motion(Section III). The internal motion
of the cluster is then taken into account,
and numerical values of internal energy
gain are tabulated to show the charac-
teristics of slow energy transfer in ellip-

tical orbital motion(Section IV).

. EQUATIONS OF MOTION

Place a fixed Cartesian coordinate sys-
tem(X,Y,Z) at the Galactic center. Place
a moving coordinate system(x, y, z) at

the center of the cluster(See Fig.). The
axes z and Z are perpendicular to the
orbital plane. For an elliptical cluster
orbit, the following relations apply to a
star in the cluster;

X=(r+z)cosf—ysinf

Y= (r+x)sinf-+ycosf (1)
VAS

where r is the distance of the cluster
center from the Galactic center, and f is
the true anomaly of the cluster in its
orbit. It follows that the kinetic energy
per unit mass of an axially symmetric
cluster.
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where wc is the orbital angular velocity,

W eeos )T 3
E is the eccentric anomaly, e is the ec-
centricity of the orbit, and » is the mean
orbital angular velocity of the cluster.

The total gravitational potential of a
star in the cluster, V, is given by the
sum of the contributions from the cluster
itself, V¢, and the Galaxy, Ve,

V: Vc+ VG (45)
where
Vo= — G];/IG +‘G_]gc_{
GM, .
— g (@at=yt=a) ©)

Eq. (5) is obtained from a series expan-

sion of V, about the center of the clus-

ter, where terms of orders higher than
the second in the partial derivatives are
neglected. The last two terms in Eq.(5)



result from the tidal field across the clus-
ter. Mg is the mass of the Galaxy.

Applying Egs. (2), (4), and (5) to the
Lagrangian relations, we obtain the equa-
tions of motion of a cluster star in the
moving coordinate system,
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where . is the orbital angular accelera-
tion.

The equations of motion in the fixed
coordinate system(X,Y,Z) are, from Egs.
(56) and (1),

X=X+ (~ 9 Ve + ZGMGx ) cosf
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where X, and Y, are the orbital accel-
erations of the centroid of the cluster.
The equations of motion of a cluster star
in a coordinate system(é, 7, ¢) paralled
to(X, Y, Z) but with origin at the cluster

center(see Fig.) are given by
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where
§=X-X,
p=Y—-Y,
(=27

. RATE OF ENERGY INCREASE ON
THE IMPULSIVE APPROXIMATION

In the impulsive approximation, the
effect of the gravitation of the cluster on
the motion of a member star is neglected.

That is,
aV. _ aV. _aV.
08T oy o =0 (10

When the cluster moves in its ellip-
tical orbit over the time interval from —¢
to t(t=0 at pericentron passage), the
tidally-induced increment increases in
the velocity components of a member
star obtained {rom integration of Eqgs.(8)

are,

s¢=| ang(éz)s [P/ +desing

+ £ sin2f— 2esin’f)

dy= [ ag-((l;ﬁ%ﬁf J%v(f + desinf (1D
— § sin2f+ 2esin®f)
4= [ 5‘3‘5%&)‘3"?5 (2f+ 2esinf)

Here ¢ is the semi-major axis, e is the
eccentricity, and f is the true anomaly
at time t of the cluster in its orbit. In-
tegration over an entire orbital period

gives,
diy= = 2%53} » 12)
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From Eqgs. (12), we derive the increase

of total kinetic energy of the cluster.
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By the impulsive approximation, this
equals the gain of internal energy A4U.

Where Rz is the mean square of the
distance of the stars from the cluster
center, and M- is the mass of the cluster.
Over the pericentron passage time(defined
as the time for the cluster to move from
one latus rectum of the orbit to the other

(entire orbit) (13)

through pericentron), the increase of in-

ternal energy [from Eq. (11)] is
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For the orbital region, f=45° to 45°,
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Similarly, in the case of hyperbolic

orbital motion:
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In Eq. (16),
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In the case of parabolic motion:
AU:iz— GMM.R* (entire orbit)
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Here ¢ is the pericentron distance.
In the case of uniform rectilinear orbital
motion, Spitzer’s (1958) expression is

AU, = i;g . G M;iS/IR, — (entire orbit) (19)

Table I. Ratio of internal energy increase for two-
body motion to that for uniform rectilinear
motion, on the impulsive approximation.

AU (entire aU.- £ AUxF

€ “4U, orbit) AU, 4aU,
5.76 4.69 4.63 1.89
2 3.89 3.70 1.42
1.41 3.30 3.35 1.26
1.15 2.65 3.14 1.19
1 1.85 3.02 1.13
0.8 2.28 2.82 0.97
0.5 3.29 2.48 0.83
0.2 5.14 2.09 0.72
0.05 6.71 1.90 0.71

In Table I, the internal energy gain
based on two-body motion is compared
with that based on uniform rectilinear
motion, where the relative velocity at
We note
that the uniform rectilinear motion ap-

pericentron is adopted for v..

proximation may lead to either an over-
estimate or an under-estimate of the in-
ternal energy gain, depending on the
value of the eccentricity and the time in-
terval considered. The error is less than a
factor of about 3 over the range of eccen-
tricites appropriate to globular clusters,
0.5 < e < 1. This result is independent
of the dynamical parameters M., Me, R.,
and a.



IV. SLOW TIDAL ENERGY TANSFER

On the impulsive approximation, the
stars in the cluster are assumed to be
displaced a negligible fraction of a cluster
radius(in the ¢, 3, ¢, coordinate system)
over the time interval during which the
tidal energy transfer effectively occurs.
Although this approximation simplifies the
derivation of the internal energy gain,
it is unrealistic that encounters are often
“slow”. Spitzer (1958) persented an
analysis which takes account of actual
internal cluster motion. He has applied
it to the case of uniform rectilinear or-
bital motion. We apply Spitzer’s proce-
dures to the case of elliptical orbital mo-
tion of the cluster. We assume that (1)
the tidal force on a star in the cluster is
small compared to the gravitational force
produced by the cluster, and (ii) the
motion of a star is simple harmonic os-
cillation around the cluster center(this is
equivalent to assuming a homogeneous
spherical cluster). That is, for a star os-
cillating in the rotational plane of the

cluster,

av, v,
g an

And for a star oscillating in the meridian

=10k (20)

plane,

vV,
g

Application of the method of variation
of parametersCused by Spitzer) to Egs.
(8), (20), and (21), gives

—1 G'MM.R?
QU= 250

=’ @

— (124343, (22)
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I, = _(_ F(t)cos2wr +dt
j » F(z)cos2wr «cos2f «dr @3)

t
L= I . F(z)sin2wr «sin2f «dr

and F(z) is the non-dimensional function
of time,

F@= L2 @40
where p/(1+¢) is the pericentron dis-
tance of the orbit. In Eq. (23) o is the
rotational angular velocity of a typical
cluster star. For an elliptical orbit, the
Eq. (23) integrations can be carried out
by the series expansions involving F(z)
(Smart, 1953).

Setting p=a(1—e?),
Eq. (22) becomes
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the energy gain

where
2
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Here a is the ratio of the time since
pericentron passage t, to the the rotat-
ional period of a typical culster star P

a:-;,: (28)

and « is the ratio of ¢ to the orbital per-
iod of the cluster P,

K= —}i—c— @1))

In Egs. (27), J,_.(me) is the (m—mn)th
order Bessel function with argument me,
where e is the eccentricity of the orbit
and m is a positive integer.

From Eq. (25), the total energy gain
over one full orbit period(t=+4P., r=%)

is
. GMcM.R2 1
AU—ﬂzm'g— L <a> 2 ) (30)
For the limiting case of the impulsive
approximation (i.e., a=0) Eq. (30) re-
duces to Eq. (13).
Applying the virial theorem and the

total gravitational potential energy of the

- 2
cluster R =—g—~ Ggf‘ f to Eq. (25),

we find that the fractional increase in

internal energy 1is

AU _ (3+e) Mg R:\*,
Ul Q-9 M, ( a ) . @
where

The tidally-determined limiting radius at
pericentron is (King, 1962),

Riiu (at pericentron) =

(3) (5he ) ¥ -ea-o o

It fOllOWS that Q 18 AU/i U| for RC=RL1M
(at pericentron). Table II gives values

of Q for several values of e, P./P:, and
k=t/P.. The -values are arranged in
order of decreasing ¢. «,, repersents a
full orbit, &, corresponds to the half orbit
from E=—90° to 90°, «, is for the or-
bital region between the ends of the latus
rectum through pericentron, #,.5=0. 5«,,
and o.,=0. 1x,.

Table II shows the following charac-
teristics for slow tidal energy transfer
along an elliptical orbit:

(1) In general,the impulsive approxima-
tion(P/P:=0) leads to either an over-
estimate or an under-estimate of the act-
ual tidal energy transfer, depending on
the value of ¢ and P:/P..

(i1) Over an entire orbital period, the
maximum energy gain for a given orbi-
tal eccentricity occurs at P,/P;=1(entire
period). For P./P:>1,
decreases with increasing P./P.. For P,/

the energy gain

P, (1, the energy gain converges rapidly
to values appropriate to the impulsive ap-
proximation(P:/Ps=0). The convergence
is essentially complete at P./P:=0. 001.
(ii1) For clusters with large random
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Table II. Q-values: Fractional energy gain of a cluster for R.=Rrru(pericentron).

e Kors Em Kp Ko.5 ko1 P./P; range of m,n
0.2 .000 .000 .000 .000 .000 100 1-50
0.5 . 000 .000 .000 .000 .000 1-50
0.2 .000 .000 .000 . 000 .000 50 1-50
0.5 .000 .000 .000 .001 .001 1-50
0.2 .000 .001 .001 .002 . 004 1-50
0.5 .000 .000 .004 . 004 .001 20 1-50
0.8 .180 .190 .216 .171 .082 1-50
0.2 .000 .003 .005 .010 .007 1-30
0.5 .000 .004 .003 . 026 .072 10 1-30
0.8 776 . 826 . 855 416 .052 1-30
0.2 .000 .017 .011 .052 .128 1-15
0.5 .158 .183 .091 .351 .158 5 1-15
0.8 711 . 769 1.044 .464 .028 1-20
0.2 . 064 .067 .101 .488 .133 1-15
0.5 1.209 1.321 1.729 1.251 .190 2.5 1-15
0.8 14.082 18.960 1.064 530 .028 1-20
0.2 8.902 .565 .619 . 497 .094 1-15
0.5 8.982 2.228 1.727 .713 .187 1 1-15
0.8 33.076 13.279 .923 .532 .029 1-20
0.2 5.466 2.394 2.235 1.323 .133 1-15
0.5 2.724 1.935 1.658 1.041 .202 0.1 1-15
0.8 1.716 1.712 1.028 .553 .029 1-20
0.2 5.945 2.364 2.202 1.323 .133 1-15
0.5 2.784 1.843 1.607 1.040 . 202 0.01 1-15
0.8 1.487 1.371 1.028 .553 .029 1-20
0.2 5.950 2.364 2.202 1.323 .133 1-15
0.5 2.785 1.842 1.607 1.040 .202 0.01 1-15
0.8 1.485 1.365 1.028 .553 .029 1-20

motion or rapid rotation (P./P:>20), the
net energy gain over an entire orbit is
negligibly small, and the impulsive ap-
proximation yields large over-estimates.
Such high density clusters are favored
for survival against tidal disruption.

V. SUMMARY AND CONCLUSIONS

(i) On the impulsive approximation,
the use of uniform rectilinear motion
gives either an over-estimate or an under-
estimate of the two-body internal energy
gain of a cluster, depending on the val-
ues of the eccentricity and the time in-
terval considered(See Table 1). The dif-
ference is less than a factor of about 3

over the range of eccentricity 0.5 Je S
1.0.

(ii) The tidally-induced internal ener-
gy gain of a cluster depends strongly
upon its internal motions and the orbital
eccentricity(See Table II). For example,
in one revolution, a cluster with P.))Ps
(an orbital period(P.) much larger than a
characteristic rotational period of a mem-
ber star(P,)] gains a negligibly small
amount of energy. In contrast, in one
revolution, a cluster with ¢20.5 and P./
P, <2 gains an amount of energy suffi-
cient for disruption. The case P./P.~R10°
yrs/10°yrs=10 lies intermediate between
the above two extremes.





