NOTE ON INFINITESIMAL η-CONFORMAL AND CL-TRANSFORMATIONS OF SPECIAL CONTACT METRIC SPACES

By U-Hang Ki

Y. Tashiro and S. Tachibana showed some characteristic properties of Fubinian and C-Fubinian manifolds in their paper [1], where the notion of C-loxodromes was introduced in an almost contact manifold with affine connection. Recently H. Mizusawa defined an infinitesimal η -conformal transformation in a contact metric space [2]. K. Takamatsu and H. Mizusawa have shown some relations in a compact normal contact metric space under an infinitesimal CL-transformation [3].

In the previous paper [4], We have obtained that an infinitesimal CL-transformation in a normal contact and K-contact metric space had some analogous properties of [3]. In this paper, we study on infinitesimal η -conformal and CL-transformations in K-contact and normal contact metric spaces.

§ 1. Preliminaries

An n (=2m+1)-dimensional differentiable manifold M of class C^{∞} with (φ, ξ, η, g) -structure (or an almost contact metric structure) has been defined by S. Sasaki [5]. By definition it is a manifold with tensor fields $\varphi_j^{\ i}$, ξ^i , η_i and so called an associated Riemannian metric tensor g_{ji} defined over M which satisfy the following relations:

(1.2)
$$\operatorname{rank} |\varphi_{i}^{i}| = n-1,$$

(1.5)
$$\varphi_{j}^{r}\varphi_{r}^{i} = -\delta_{j}^{i} + \xi^{i}\eta_{j},$$

$$(1.6) g_{ji}\xi^{j} = \eta_{i},$$

$$(1.7) g_{ji}\varphi_h^{\ j}\varphi_k^{\ i} = g_{kh} - \eta_k \eta_h .$$

On the other hand let M be a differentiable manifold with a contact structure. If we put

$$(1.8) 2g_{ir}\varphi_j^{\ r} = 2\varphi_{ji} = \partial_j\eta_i - \partial_i\eta_j,$$

then we can find four tensors φ_j^i , ξ^i , η_i and g_{ji} so that they define an (φ, ξ, η, g) -structure. Such a structure is called a contact metric structure [5].

In an almost contact metric space there are four tensor fields $N_{ji}^{\ h}$, $N_{j}^{\ i}$, N_{ji} and N_{j} which are the analogue of the Nijenhuis tensor in an almost complex structure [5].

A contact metric space with $N_{ji}=0$ or $N_{ji}^{\ \ h}=0$ is called a K-contact metric space or a normal contact metric space respectively. Of course a normal contact metric space is a K-contact metric space and a K-contact metric space is a contact metric space [6]. In the following we consider a notation η^i instead of ξ^i .

A K-contact metric space in which the Ricci tensor takes the form

$$(1.9) R_{ii} = ag_{ii} + b\eta_i\eta_i;$$

is called a K-contact η -Einstein space, where α and b become constant(n > 3), and

(1.10)
$$a+b=n-1$$
, $R=an+b$

hold good [7], [6].

Let $R_{kji}^{\ \ h}$ be the Riemannian curvature tensor and put

$$(1.11) H_{ji} = \varphi^{kh} R_{hjih}, \text{ then } H_{ji} = -\frac{1}{2} \varphi^{kh} R_{khji}.$$

In a contact metric space, φ_{ji} is a skew symmetric closed tensor and

$$(1.12) \qquad \nabla_{r} \varphi_{i}^{r} = (n-1)\eta_{i}$$

holds good, where ∇_i denotes the covariant differentiation with respect to the Riemannian connection.

In a K-contact metric space the following identities are valid [6]:

$$(1.13) \qquad \nabla_j \eta_i = \varphi_{ji},$$

$$(1.14) \qquad \nabla_k \varphi_{ii} + R_{rkii} \eta^r = 0,$$

(1.15)
$$R_{kijk}\eta^k\eta^j = 0$$
, $H_{ir}\eta^r = 0$,

$$(1.16) R_{kjih}\eta^k\eta^h = g_{ji} - \eta_j\eta_i,$$

(1.17)
$$R_{ir}\eta^r = (n-1)\eta_i$$
.

In a normal contact metric space

$$(1.18) \qquad \nabla_k \varphi_{ji} = \eta_j g_{ki} - \eta_i g_{kj},$$

$$(1.19) \eta_r R_{kji}{}^r = \eta_k g_{ji} - \eta_j g_{ki},$$

(1.20)
$$\varphi_{j}{}^{r}R_{ri} = H_{ji} + (n-2)\varphi_{ji}$$

and also (1.13), (1.17) hold good [6].

In a normal contact or K-contact metric space a vector v^i is called an infinitesimal CL-transformation if it satisfies

(1.21)
$$\mathcal{L}_{i}^{\left\{h\atop ji\right\}} = \rho_{j} \delta_{i}^{h} + \rho_{i} \delta_{j}^{h} + \alpha (\eta_{j} \varphi_{i}^{h} + \eta_{i} \varphi_{j}^{h}),$$

where \mathcal{L} is the operator of Lie derivative and $\begin{Bmatrix} h \\ ji \end{Bmatrix}$ is Riemannian connection, ρ_i is a vector field and α is a certain scalar[1], [3]. Contracting h and j in (1.21), we see that ρ_i is a gradient.

In a K-contact metric space an infinitesimal CL-transformation hold good the following relations [4].

$$\pounds R_{ji} = (1-n) \nabla_{j} \rho_{i} + 2\alpha (n \eta_{j} \eta_{i} - g_{ji}) + \eta_{j} \varphi_{i}^{\ r} \nabla_{r} \alpha + \eta_{i} \varphi_{j}^{\ r} \nabla_{r} \alpha,$$

Finally we shall prepare the following theorem which has been proved by H. Mizusawa and K. Takamatsu.

LEMMA. In a normal contact metric space, if v^i is an infinitesimal CL-transformation, then the following relation holds good [3].

(1.24)
$$\pounds g_{ji} = -\nabla_{ji} \rho_i + \alpha (g_{ji} + \eta_j \eta_i).$$

§ 2. Infinitesimal CL-transformations in an η-Einstein normal contact metric space.

Let v^i be an infinitesimal CL-transformation in a normal contact metric space. Substituting (1.21) and (1.24) into the identity

$$\nabla_{k} \mathfrak{L} g_{ji} = g_{hi} \mathfrak{L} \begin{Bmatrix} h \\ kj \end{Bmatrix} + g_{jh} \mathfrak{L} \begin{Bmatrix} h \\ ki \end{Bmatrix},$$

we get

$$(2.1) \qquad R_{rij}{}^{h} \rho^{r} + (g_{ji} + \eta_{j} \eta_{i}) \nabla^{h} \alpha - (\delta^{h}_{i} + \eta^{h} \eta_{i}) \nabla_{j} \alpha = \rho^{h} g_{ji} - \rho_{j} \delta^{h}_{i},$$

$$\mathcal{L}^{\left\{h\right\}}_{\left\{h\right\}} + 2(\rho_{k} \delta^{h}_{j} + \rho_{j} \delta^{h}_{k}) = (\delta^{h}_{k} + \eta^{h} \eta_{k}) \nabla_{j} \alpha + (\delta^{h}_{j} + \eta^{h} \eta_{j}) \nabla_{k} \alpha - (g_{jk} + \eta_{j} \eta_{k}) \nabla^{h} \alpha \quad [4].$$

Thus we have the following:

PROPOSITION 2.1. Let v^i be an infinitesimal CL-transformation and ρ_i be its associated vector. If α is constant then ρ_i is an infinitesimal projective transformation and conversely.

Now, we begin with some simple lemmas.

LEMMA 2.2. In a K-contact metric space, for a vector field ρ_i if there exist λ and μ such that

$$(2.2) \qquad \nabla_{j} \rho_{i} = \lambda g_{ji} + \mu \eta_{j} \eta_{i},$$

then we have $\mu=0$ [7].

PROOF. Differentiating (2.2) covariantly and taking account of (1.13) we have

$$\nabla_k \nabla_j \rho_i = g_{ji} \nabla_k \lambda + \eta_j \eta_i \nabla_k \mu + \mu (\varphi_{kj} \eta_i + \varphi_{ki} \eta_j).$$

Transvecting φ^{kj} to this and making use of (1.4), (1.5) and (1.11), we get $H_{ir} \rho^r = -\varphi_i^{\ k} \nabla_k \lambda + \mu(n-1) \eta_i$.

Transvecting the last equation with η_i and using of (1.15), we have $\mu=0$. This complets the proof.

LEMMA 2.3. In a K-contact metric space, for a vector field ρ_i if there exist scalars λ and μ such that

$$(2.3) \qquad \nabla_{j}\rho_{i} = \lambda g_{ji} + \mu \eta_{j} \eta_{i} + c(\eta_{j} \varphi_{i}^{\ r} \rho_{r} + \eta_{i} \varphi_{j}^{\ r} \rho_{r}), \quad c = constant,$$

then we have $\mu = c\lambda$.

PROOF. Operating ∇_k to (2.3), using of (1.13), we get

$$(2.4) \qquad \nabla_{k}\nabla_{j}\rho_{i} = g_{ji}\nabla_{k}\lambda + \eta_{j}\eta_{i}\nabla_{k}\mu + \mu(\varphi_{kj}\eta_{i} + \varphi_{ki}\eta_{j}) + c\{\varphi_{kj}\varphi_{ir}\rho^{r} + \varphi_{ki}\varphi_{jr}\rho^{r} + \eta_{i}\rho^{r}\nabla_{k}\varphi_{ir} + \eta_{i}\rho^{r}\nabla_{k}\varphi_{jr} + \eta_{j}\varphi_{ir}\nabla_{k}\rho^{r} + \eta_{i}\varphi_{jr}\nabla_{k}\rho^{r}\}.$$

On the other hand, from (2.3) we have

$$\varphi_{ir} \nabla_k \rho^r = \lambda \varphi_{ik} - c \eta_k \rho_i + c \eta_r \rho^r \eta_k \eta_i$$

Substituting (1.14) and the last equation into (2.4), we obtain

$$\begin{split} \nabla_{k}\nabla_{j}\varrho_{i} &= g_{ji}\nabla_{k}\lambda + \eta_{j}\eta_{i}\nabla_{k}\mu + \mu(\varphi_{kj}\eta_{i} + \varphi_{ki}\eta_{j}) \\ &+ c\{\varphi_{kj}\varphi_{ir}\varrho^{r} + \varphi_{ki}\varphi_{jr}\varrho^{r} - \eta_{j}\varrho_{r}\eta^{s}R_{ski}^{\quad r} - \eta_{i}\varrho_{r}\eta^{s}R_{skj}^{\quad r} \end{split}$$

$$+\eta_i(\lambda\varphi_{jk}-c\ \eta_k\varrho_j+c\ \eta^r\varrho_r\eta_k\eta_j)+\eta_j(\lambda\varphi_{ik}-c\ \eta_k\varrho_i+c\ \eta^r\varrho_r\eta_k\eta_i)\}.$$

Transvecting $\phi^{kj}\eta^i$ to this and making use of (1.4), (1.5), (1.16) and (1.15), we get $\mu = c\lambda$.

LEMMA 2.4. In an n (n>3) dimensional normal contact η -Einstein space $(b \neq 0)$, v^i is an infinitesimal CL-transformation then the following relation holds good.

(2.5)
$$\nabla_j \alpha = \frac{b}{n} (\rho_j - \eta_r \rho^r \eta_j).$$

PROOF. Contracting h and j in (2.1) we have

$$(2.6) -R_{r,i}\rho^r + \eta_i\eta^r \nabla_r \alpha - n\nabla_i \alpha = (1-n)\rho_i.$$

Transvecting (2.6) with η^i and using of (1.17), we get $\eta^r \nabla_r \alpha = 0$.

Thus (2.6) can be written as

$$R_{jn}o^r + n\nabla_j\alpha = (n-1)\rho_j$$

Substituting (1.9) and (1.10) into the last equation, we obtain (2.5).

LEMMA 2.5. Let v^i be an infinitesimal CL-transformation in a normal contact η -Einstein space (n>3) with $b \neq 0$, then v^i is a contact one.

PROOF. Taking of the Lie derivative of the both sides of (1.19) and substituting (1.23) into the equation thus obtained, we get

$$(2.7) R_{kji}{}^{h} \mathcal{L} \eta_{h} = g_{ji} \mathcal{L} \eta_{k} + \eta_{k} \mathcal{L} g_{ji} - g_{ki} \mathcal{L} \eta_{j} - \eta_{j} \mathcal{L} g_{ki} - \eta_{j} \nabla_{k} \rho_{i}$$

$$+ \eta_{b} \nabla_{i} \rho_{i} + \alpha (\eta_{i} g_{bi} - \eta_{b} g_{ii}).$$

Transvecting (2.7) with φ^{kj} , we have

(2.8)
$$(\varphi^{kj}R_{kji}^{\ \ h} + 2\varphi_i^{\ \ h}) \pounds \eta_h = 0.$$

Substituting (1.9), (1.11) and (1.20) into (2.8), we get

$$\mathfrak{L}\eta_j = \sigma \ \eta_j \ ,$$

where we have put $\sigma = \eta^r \mathfrak{L} \eta_r$.

In an η -Einstein space with $b \rightleftharpoons 0$, for any vector v' we have

Substituting (1.22), (1.24), (2.5) and (2.9) into (2.10), we obtain

$$(2.11) \qquad (1-n)\nabla_{j}\rho_{i}+2\alpha(n\eta_{j}\eta_{i}-g_{ji})+\frac{b}{n}(\eta_{j}\varphi_{i}{}^{r}\rho_{r}+\eta_{i}\varphi_{j}{}^{r}\rho_{r})$$

$$=a\left[-\nabla_{j}\rho_{i}+\alpha(g_{ji}+\eta_{j}\eta_{i})\right]+2\ b\ \sigma\eta_{j}\eta_{i}.$$

THEOREM 2.6. In a normal contact η -Einstein space (n>3) with a+2<0, v' be an infinitesimal CL-transformation with α =constant, then v' is a concircular one.

PROOF. From Lemma 2.4, (2.11) can be written as

$$(2.12) \hspace{1cm} (1-n) \nabla_j o_i + 2\alpha (n\eta_j \eta_i - g_{ji}) = a \left[-\nabla_j o_i + \alpha (g_{ji} + \eta_j \eta_i) \right] + 2 b \sigma \eta_j \eta_i.$$

Applying Lemma 2.2 to (2.12), it follows that

$$-b\nabla_{j}\rho_{i}=(a+2)\alpha g_{ij}$$

which shows that the transformation is concircular.

THEOREM 2.7. * In a compact normal contact η -Einstein space (n>3) with a+2<0, let v^i be an infinitesimal CL-transformation then v^i is an infinitesimal isometry.

PROOF. Operating ∇_b to (2.5), we have

$$\nabla_{k}\nabla_{j}\alpha = \frac{b}{n}(\nabla_{k}\rho_{j} - \varphi_{k}^{r}\rho_{r}\eta_{j} - \eta_{r}\eta_{j}\nabla_{k}\rho^{r} - \eta^{r}\rho_{r}\varphi_{kj}).$$

Transvecting g^{kj} to this and using of (1.4) we get

(2.13)
$$\Delta \alpha = \frac{b}{v} (\nabla^r \rho_r - \beta),$$

where we put $\beta = \eta' \eta^s \nabla_r \rho_s$.

On the other hand, substituting (1.9), (1.10), (1.22) and (1.24) into the identity

$$\pounds R = g^{ji} \pounds R_{ji} + R_{ji} \pounds g^{ji} ,$$

we obtain

$$0 = (1-n)\nabla^r \rho_r + (ag_{ji} + b\eta_j \eta_i) [\nabla^j \rho^i - \alpha (g^{ji} + \eta^j \eta^i)]$$
 or

(2.14)
$$b(\nabla^r \rho_r - \beta) = -(a+2)(n-1)\alpha$$
.

Comparing with (2.13) and (2.14), it follows that

(2.15)
$$\Delta \alpha = -\frac{n-1}{n}(a+2)\alpha.$$

 $^{^{(*)}}$ It is well known that $v^i+\frac{1}{2}\rho^i$ is an infinitesimal isometry [3].

Since $\alpha+2<0$, applying Green's theorem to (2.15), we have $\alpha=0$ [9]. Last, applying Lemma 2.3 to (2.11), we get

$$(2.16) n\nabla_{j}\varrho_{i} + \frac{(n-1)(a+2)}{b}\alpha g_{ji} - (\eta_{j}\varphi_{i}^{r}\varrho_{r} + \eta_{i}\varphi_{j}^{r}\varrho_{r}) = 0.$$

Thus, taking account of (2.5) and $\alpha = 0$, we have $\nabla_i \rho_i = 0$.

Since our space is compact, we find $o_i = 0$.

Hence v^i is an infinitesimal isometry.

In an η -Einstein space it is known that if $\pounds g_{ji} = 0$, then $\pounds \eta_i = 0$ holds good [7].

By Theorem 2.7 and the identity

$$\nabla_{j} \pounds \eta_{i} - \pounds \varphi_{ji} = \eta_{r} \pounds \begin{Bmatrix} r \\ ji \end{Bmatrix},$$

we have immediately the following [2]:

COROLLARY 2.8. In a compact normal contact η -Einstein space (n>3) with a+2<0, an infinitesimal CL-transformation is an automorphism.

- § 3. Curvature-preserving infinitesimal CL-transformation in a K-contact metric space.
- M. Okumura has proved that, in a normal contact metric space any curvature-preserving infinitesimal transformation is necessary an infinitesimal isometry [8].

In this section we shall prove the following:

THEOREM 3.1. In a compact K-contact metric space, a curvature preserving infinitesimal CL-transformation is necessary an infinitesimal isometry.

PROOF. Transvecting g^{ji} to (1.22), we have $\nabla_n o^r = 0$. Therefore $\rho_i = 0$.

Transvecting (1.22) with $\eta^j \eta^i$, we get

$$(3.1) (1-n)\eta^{r}\eta^{s}\nabla_{r}\rho_{s} + 2\alpha(n-1) = 0.$$

On the other hand, transvecting $g^{ki}\eta^j$ to (1.23) and taking account of $\nabla^r \rho_r = 0$, we obtain

$$(3.2) -\eta^r \eta^s \nabla_r o_s - \alpha(n-1) = 0.$$

From (3.1) and (3.2), we find $\alpha = 0$, and hence $\mathfrak{L}\left\{\frac{h}{ji}\right\} = 0$.

Since our space is compact, we have $\mathfrak{L}_{n}g_{ji}=0$. This completes the proof.

In the proof of Theorem 3.1, we have immediately the following

COROLLARY 3.2. Let v^i be an infinitesimal CL-transformation and ρ_i be its associated vector in a K-contact metric space. In order that v^i be an infinitesimal curvature-preserving transformation, it is necessary and sufficient that α be zero and $\nabla_i \rho_i = 0$.

§ 4. Infinitesimal η -conformal transformation.

In a contact metric space, we consider an infinitesimal transformation satisfying the following

(4.1)
$$\pounds g_{ji} = \lambda (g_{ji} + \eta_j \eta_i),$$

where λ is a scalar function. We shall call such a transformation an infinitesimal η -conformal one [2]. In the paper [2], H. Mizusawa has proved the following two theorems.

THEOREM A. In a K-contact metric space with constant scalar curvature $R \neq -(n-1)$, an infinitesimal η -conformal transformation with λ =constant is an infinitesimal isometry.

THEOREM B. In order that a transformation in a contact metric space be an infinitesimal isometry, it is necessary and sufficient that the transformation be infinitesimal η -conformal and infinitesimal affine at the same time.

Now, we shall prove the following:

THEOREM. 4.1. In a compact K-contact metric space (n>3) with constant scalar curvature $R+(n-1)\leq 0$, an infinitesimal η -conformal transformation is an infinitesimal isometry.

PROOF. Substituting (4.1) into the identity

$$\pounds \left(\begin{matrix} h \\ ji \end{matrix} \right) = \frac{1}{2} g^{hr} (\nabla_j \pounds g_{ri} + \nabla_i \pounds g_{rj} - \nabla_r \pounds g_{ji}),$$

we get

$$\begin{split} & \underbrace{\mathcal{E}}_{v}^{\left\{\begin{array}{c}h\\ji\end{array}\right\}} = \frac{1}{2} \left[\lambda_{j}(\delta_{i}^{h} + \eta^{h}\eta_{i}) + \lambda_{i}(\delta_{j}^{h} + \eta^{h}\eta_{j}) - \lambda^{h}(g_{ji} + \eta_{j}\eta_{i}) \right. \\ & \left. + 2\lambda(\varphi_{j}^{h}\eta_{i} + \varphi_{i}^{h}\eta_{j})\right], \ \lambda_{i} = \partial_{i}\lambda. \end{split}$$

According to (1.14), (4.2) and the identity

(4.3)
$$\pounds R_{kij}^{h} = \nabla_{h} \pounds \begin{Bmatrix} h \\ ji \end{Bmatrix} - \nabla_{j} \pounds \begin{Bmatrix} h \\ ki \end{Bmatrix},$$

we have

$$\begin{aligned} \mathcal{L}_{v}R_{kji}^{\quad h} &= \frac{1}{2} \left[\eta_{i} (\lambda_{k} \varphi_{j}^{\quad h} - \lambda_{j} \varphi_{k}^{\quad h}) + \eta^{h} (\lambda_{j} \varphi_{ki} - \lambda_{k} \varphi_{ji} + 2\lambda_{i} \varphi_{kj}) \right. \\ &\quad + \nabla_{k} \lambda_{i} (\bar{\sigma}_{j}^{\quad h} + \eta^{h} \eta_{j}) - \nabla_{j} \lambda_{i} (\bar{\sigma}_{k}^{\quad h} + \eta^{h} \eta_{k}) + \lambda_{i} (\varphi_{k}^{\quad h} \eta_{j} - \varphi_{j}^{\quad h} \eta_{k}) \\ &\quad - \nabla_{k} \lambda^{h} (g_{ji} + \eta_{j} \eta_{i}) + \nabla_{j} \lambda^{h} (g_{ki} + \eta_{k} \eta_{i}) - \lambda^{h} (2\eta_{i} \varphi_{kj} + \eta_{j} \varphi_{ki} \\ &\quad - \eta_{k} \varphi_{ji}) + 2\varphi_{i}^{\quad h} (\lambda_{k} \eta_{j} - \lambda_{j} \eta_{k}) + 2\lambda (2\varphi_{kj} \varphi_{i}^{\quad h} + \varphi_{ki} \varphi_{j}^{\quad h} - \varphi_{ji} \varphi_{k}^{\quad h}) \\ &\quad + 2\lambda (\eta_{k} \eta^{r} R_{rji}^{\quad h} - \eta_{j} \eta^{r} R_{rki}^{\quad h} - \eta^{r} \eta_{i} R_{jkr}^{\quad h}) \right]. \end{aligned}$$

Now taking of the Lie derivative on both sides of (1.16), we obtain

Substituting (4.1) and (4.4) into (4.5), transvecting g^{ji} to (4.5), and making use of (1.15) and (1.16) we get

$$(4.6) \qquad \frac{1}{2} \left[4\beta - (n+1)\beta - 2\nabla^r \lambda_r + 2(n-1)\lambda \right] = \lambda(n+1) - 2\eta^r \mathfrak{L} \eta_{rs}$$

where we put $\beta = \eta^r \eta^s \nabla_r \lambda_s$.

On the other hand, from (4.1) and the identity

$$\frac{1}{2}\eta^r\eta^s \pounds g_{rs} = \eta^r \pounds \eta_r,$$

we have

$$(4.7) \eta' \pounds \eta_r = \lambda .$$

Making use of (4.6) and (4.7), we obtain

$$(4.8) 2\nabla^r \lambda_r + (n-3)\beta = 0.$$

According (4.1), (4.4) and the identity

$$g^{ji} \mathcal{L} R_{ji} + R_{ji} \mathcal{L} g^{ji} = \mathcal{L} R = 0$$
,

we have

$$(4.9) -n\nabla^{r}\lambda_{r} + \beta - \lambda(R+n-1) = 0.$$

Substituting (4.9) into (4.8) to eliminate β , we get

(4.10)
$$\nabla^r \lambda_r = -\frac{(n-3)(R+n-1)}{(n-1)(n-2)} \lambda, \ (n>3).$$

Applying Green's theorem to (4.10), we have $\lambda=0$ if $R+n-1\leq 0$. This completes the proof.

We have also from theorem 4.1.

COROLLARY 4.2. In a compact K-contact η -Einstein space (n>3) with a+2<0,

an infinitesimal η-conformal transformation is an automorphism.

THEOREM 4.3. In order that a transformation in an Einstein (or compact) contact metric space be an infinitesimal isometry, it is necessary and sufficient that the transformation be infinitesimal η -conformal and infinitesimal CL-transformation at the same time.

PROOF. By theorem B, the necessity is evident. We shall prove the sufficiency. From (1.21) and (4.2), it follows that

$$(4.11) \qquad \rho_{j} \delta_{i}^{h} + \rho_{i} \delta_{j}^{h} + \alpha (\eta_{j} \varphi_{i}^{h} + \eta_{i} \varphi_{j}^{h})$$

$$= \frac{1}{2} \left[\lambda_{i} (\delta_{i}^{h} + \eta^{h} \eta_{i}) + \lambda_{i} (\delta_{j}^{h} + \eta^{h} \eta_{j}) - \lambda^{h} (g_{ji} + \eta_{j} \eta_{i}) + 2\lambda (\varphi_{j}^{h} \eta_{i} + \varphi_{i}^{h} \eta_{j}) \right].$$

Contracting (4.11) with respect to j and h, we get $2o_i = \lambda_i$. Next transvecting (4.11) with η_h , we obtain

$$\eta_{j}\rho_{i}+\eta_{i}\rho_{j}=(\eta_{r}\rho^{r})(g_{ji}+\eta_{j}\eta_{i}),$$

from which we have $\eta_r \rho' = 0$ and $\rho_i = 0$. From these and (4.11), we find $\lambda = {\rm constant}, \ \alpha = \lambda$.

By the identity (4.3) and λ =constant it follows that

(4.12)
$$\pounds R_{ji} = \lambda \nabla_r (\varphi_j^r \eta_i + \varphi_i^r \eta_j),$$

$$\pounds R = g^{ji} \pounds R_{ji} + R_{ji} \pounds g^{ji} = -\lambda (R + R_{ji} \eta^j \eta^i).$$

If we assume that the space be Einstein, we have

$$\pounds R = -\frac{n+1}{n} \lambda R = 0,$$

from which we get $\lambda = 0$. If the space be compact, from (4.1) we have

$$\nabla^r v_r = \frac{n+1}{2} \lambda$$
.

By Green's theorem we have $\lambda=0$. These complete the proof.

Department of Mathematics Teacher's College Kyungpook University

REFERENCES

- Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kodai Math. Sem. Rep. 15 (1963) 176-183.
- [2] H. Mizusawa, On certain infinitesimal conformal transformations of contact metric spaces, Science Rep. of Niig. Univ. A (1965) 33—39.
- [3] K. Takamatsu and H. Mizusawa, On infinitesimal CL-transformations of compact normal contact metric spaces, Science Rep. of Niig. Univ. A (1966) 31-39.
- [4] U-Hang Ki, Note on infinitesimal CL-transformations of normal and K-contact metric spaces, Kyungpook Math, Journal Vol. 7 (1967) 47-55.
- [5] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric structures, Journ. Math. Soc. Japan. 14 (1962) 249—271.
- [6] H. Mizusawa, On infinitesimal transformations of K-contact and normal contact metric spaces, Science Rep. of Niig. Univ. A (1964) 5-18.
- [7] M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces, Töhoku. Math. Journ. 14 (1962) 398-412.
- [8] —, Certain infinitesimal transformation of normal contact metric manifold, Kodai.Math. Sem. Rep. 18 (1966) 116—119.
- [9] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon press (1965).