A SHORT NOTE ON THE RIEMANN MAPPING THEOREM

By Choon Jai Rhee

Let R be a simply connected region which is not the whole complex plane and let D be the open unit disk in the plane. The Riemann Mapping Theorem [1] states that if $a \in R$ then there is a unique analytic homeomorphism f_a of R onto D such that $f_a(a) = 0$ and $f_a'(a) > 0$. Let H(R) be the space of all such f_a with the compact-open topology. We showed in [2] that H(R) is homeomorphic to R. Now let H be the set of all analytic homeomorphisms g of R onto D such that if $a \in R$ is the zero of g, then |g'(a)| > 0. We give the compact-open topology to the set H. Let S' be the unit circle in the plane.

THEOREM. H and $S' \times R$ are homeomorphic.

PROOF. Let $\varphi: S' \times H(R) \to H$ be a function defined by $\varphi(c, f_a) = cf_a$. Then φ is one-to-one. Let $g \in H$ and $a \in R$ such that g(a) = 0 and |g'(a)| > 0. Let $k = \overline{g'(a)} / |g'(a)|$. Then $k \in S'$ and $kg \in H(R)$. Since such elment in H(R) is unique, we let $f_a = kg$. Then $\varphi(\overline{k}, f_a) = g$. Now suppose $\{c_n\}$ is a sequence of elements in S' which converges to c_o and $\{f_a\}$ is a sequence of elements of H(R) which converges to $f_a \in H(R)$. Then by the inequality $|c_n f_{a_*}(z) - c_o f_{a_*}| \le |c_n - c_o| |f_{a_*}(z)| + |c_o| |f_{a_*}(z) - f_{a_*}|$, we see that the sequence $\{c_n f_{a_*}\}$ converges to $c_o f_{a_*}$ uniformly on each compact subset of R. Therefore φ is continuous.

Let $\{g_n\}$ be a sequence in H which converges to $g_o \in H$. Let $k_n g_n = f_{a_*}$, $k_n \in S'$. Then the sequence $\{a_n\}$ converges to $a_o \in R$ and hence $\{f_{a_*}\}$ converges uniformly to f_{a_*} on each compact subset of R. Let $\{k_{n_*}\}$ and $\{k_m\}$ be subsequences of $\{k_n\}$ which converge k_o and k_o' respectively. Then, since $k_o f_{a_*} = \overline{k_o'} f_{a_*}$, we must have $k_o = k_o'$. Therefore φ^{-1} is continuous.

BIBLIOGRAPHY

- [1] Ahlfors. L. V.; Complex analysis, McGraw-Hill. 1966.
- [2] Rhee. C. J.; A note on the Riemann mapping theorem, Kyungpook Math. J. Vol. 8 No. 2 1968.
- [3] Dugundji, J.; Topology, Allyn and Bacon, 1966.