A NOTE ON THE RIEMANN MAPPING THEOREM

By Choon Jai Rhee

The Riemann Mapping Theorem [1] states that if R is a simply connected region which is not the whole complex plane C and a is a point of R, then there exists a unique analytic homeomorphism f_a of R onto the open unit disc $D = \{z \in C \mid |z| < 1\}$ such that $f_a(a) = 0$ and $f_a'(a) > 0$. Let $H(R) = \{f_a \mid a \in R\}$ with the compact open topology. We prove the following.

THEOREM. R and H(R) are homeomorphic.

PROOF. We define a function $F: R \rightarrow H(R)$ as follows: For each point $a \in R$, let $F(a)=f_a$, where f_a is provided by the Riemann Mapping Theorem. Then obviously F is one-to-one and onto. To establish the continuity of F, we let a_1 , a_2 , a_3 be a sequence of points of R which converges to a point $a_0 \in R$, and will show that the sequence $F(a_1)$, $F(a_2)$, $F(a_3)$, ... converges to $F(a_0)$ in H(R). To avoid the use of double subscripts, we let $F(a_n)=f_n$. Denote the points $f_0(a_n)$ by b_n , $n=0,1,2,\dots$. Then by the continuity of f_0 , the sequence b_1 , b_2 , b_3 , ... converges to b_0 , where $b_0 = f_0(a_0)$. Since the sequence $f'_0(a_1)$, $f'_0(a_2)$, $f'_0(a_3)$, ... converges to $f'_0(a_0)$, where $f'_0(a_0) > 0$, there exists a positive integer N such that $|f_0'(a_n)| > 0$ for all $n \ge N$. Therefore, for each integer $n \ge N$, there exists a complex number k_n such that $|k_n|=1$, $k_n f_0'(a_n)>0$, and the sequence $\{k_n\}_n$ converges to 1. Then, for each $n{\ge}N$, $k_n\,f_0$ is an analytic homeomorphism of R onto D, and the sequence $\{k_n f_0\}_n$ converges to $k_0 f_0$ uniformly on every compact subset of R. Now for each $n \ge N$, let $c_n = k_n b_n$ and g_n be the unique analytic homeomorphism of D onto itself such that $g_n(c_n) = 0$ and $g_n'(c_n) > 0$. Let $h_n = g_n(k_n f_0)$, for each $n \ge N$. Then each h_n is an analytic homeomorphism of R onto D such that $h_n(a_n) = 0$ and $h_n'(a_n) > 0$. Thus by the uniqueness of the Riemann Mapping Theorem, we must conclude that $h_n = f_n$ for each $n \ge N$.

On the other hand, since each g_n is an analytic function of D onto itself, each g_n can be written as $g_n(z) = (\alpha_n z + \overline{\beta}_n)/(\beta_n z + \overline{\alpha}_n)$ with the condition that $\alpha_n \alpha_n - \beta_n \beta_n = 1$. But, solving for α_n and β_n in terms of c_n , we obtain either α_n $=(1-c_nc_n)^{-1/2}$ and $\beta_n=-c_n/(1-c_nc_n)^{1/2}$ or $\alpha_n=-(1-c_nc_n)^{-1/2}$ and $\beta_n=c_n/(1-c_nc_n)^{-1/2}$ $(c_n c_n)^{1/2}$. Now, it follows that the sequence $(g_n)_n$ converges uniformly to the identity function g_0 on every compact subset of D. This fact together with the uniform convergence of the sequence $\{k_n f_0\}_n$ on every compact subset of R implies that the sequence $\{h_n\}_n$ converges to h_0 uniformly on every compact subset of R. Hence the sequence $F(a_1)$, $F(a_2)$, $F(a_3)$, converges to $F(a_0)$ in H(R). Since the topology for H(R) is metrizable and separable, to establish the continuity of F^{-1} , it is sufficient to show the sequential continuity of F^{-1} . Let f_1 , f_2 , f_3 , be a sequence of elements of H(R) which converges to $f_0 \in H(R)$. Recall that the convergence of a sequence in H(R) is uniform convergence on every compact subset of R. Let $a_0 = F^{-1}(f_0)$. We may now apply Hurwitz's Theorem [1] to conclude that every sufficiently small neighborhood U of a_0 contains exactly one zero of each f_n if n is sufficiently large. If we denote a_n $=F^{-1}(f_n)$, $n=1,2,3,\dots$, each a_n is a zero of f_n , and by the Riemann Mapping Theorem the only zero. Hence, for some N, if $n \ge N$, $a_n \in U$. Therefore, a_0 is a limit point of the sequence a_1 , a_2 , a_3 , It is obvious that a_0 is the only limit point of the sequence. Hence, the continuity of F^{-1} is proved.

Wayne State University

BIBLIOGRAPHY

^[1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1953.

^[2] J. Dugundji, Topology, Allyn and Bacon, 1966