ON PRECORRECT UNIFORM SPACES

C. J. Mozzochi

A subset $\mathscr U$ of the power set of $(X\times X)$ is a precorrect uniformity on X iff $\mathscr U$ satisfies (A_1) $U\in\mathscr U$ iff $U=U^{-1}$, $U\supset A$, and U contains a member of $\mathscr U$: (A_2) For every $A\subset X$ and U,V in $\mathscr U$ there exists a $W\in\mathscr U$ such that $W[A]\subset U[A]\cap V[A]$: (A_3) For every $A\subset X$ and $U\in\mathscr U$ there exists V. W in $\mathscr U$ such that $(W\circ V)[A]\subset U[A]$.

A relation δ on P(X), the power set of X, is a *proximity* on X iff δ satisfies: (P_1) $A\delta B$ implies $B\delta A$; (P_2) $C\delta(A\cup B)$ iff either δ CA or $C\delta B$; (P_3) ϕ δA for every $A \subset X$; (P_4) $x\delta x$ for all $x\epsilon X$; (P_5) $A\delta B$ implies the existence of C and D such that $C \cap D = \phi$, and $A\delta(X - D)$, $B\delta(X - D)$

THEOREM 1. Let $\mathscr U$ be a subset of the power set of $(X\times X)$. Suppose for each $U\in\mathscr U$ $U=U^{-1}$. Define a relation $\delta(\mathscr U)$ on P(X) by $A\delta(\mathscr U)B$ iff $U[A]\cap B=\phi$ for all $U\in\mathscr U$. Then $\delta(\mathscr U)$ satisfies $(P_1),(P_2),(P_3),(P_4)$ and (P_5) iff $\mathscr U$ satisfies $(A_1^*):U\in\mathscr U$ implies $U\supset A,(A_2)$ and (A_3) .

A proof of Theorem 1 is given in [1].

If we are given δ , a proximity on X, then the class of precorrect uniformities \mathscr{U} on X such that $\delta(\mathscr{U}) = \delta$ is called a *proximity class of precorrect uniformities* on X and is denoted by $\Pi(\delta)$.

THEOREM 2. Let (X, δ) be a proximity space. Then $\Pi(\delta)$ contains one and only one totally bounded symmetric uniformity.

PROOF. This is an immediate consequence of Theorem 21.20 in [6].

THEOREM 3. Let (X, δ) be a proximity space Then $\Pi(\delta)$ contains a maximum and a minimum.

PROOF. For all A, B in P(X) let $U_{A, B} = (X \times X) - ((A \times B) \cup (B \times A))$. It is easy to show by Theorem 1 that $\mathcal{B} = \{U_{A, B} | A \ \delta B\}$ is a base for a precorrect uniformity $\mathcal{U}_1(\delta)$ on X such that $\mathcal{U}_1(\delta)$ is the least element in $\Pi(\delta)$. Also, it is easily shown by Theorem 1 that the union of an arbitrary family of members of $\Pi(\delta)$ is a base for a precorrect uniformity on X that is a member of $\Pi(\delta)$; consequently $\Pi(\delta)$ has a maximum element.

THEOREM 4. If δ is the usual proximity for the reals, X, then $H(\delta)$ contains at least two distinct precompact precorrect uniformities that have an open base.

PROOF. Let $\gamma = \{U_{A, B} | A \tilde{\delta} B\}$. Let $\mathscr{B} = \{\text{all finite intersections of members of } \gamma\}$. It can be shown by Theorem 1 that \mathscr{B} is a base for a precompact symmetric uniformity $\mathscr{U}_2(\tilde{\delta})$ on X such that if $\mathscr{U}_1(\tilde{\delta})$ is the uniformity that was constructed in Theorem 3 then $\mathscr{U}_1(\tilde{\delta})$ is properly contained in $\mathscr{U}_2(\tilde{\delta})$. It is easily shown that both $\mathscr{U}_1(\tilde{\delta})$ and $\mathscr{U}_2(\tilde{\delta})$ are totally bounded and have an open base (cf. [5]).

We say that a filter in the precorrect uniform space (X, \mathcal{U}) is weakly Cauchy iff for every $U \in \mathcal{U}$ there exists an $x \in X$ such that $U[x] \in \mathcal{F}$. Also, (X, \mathcal{U}) is complete iff every weakly Cauchy filter on (X, \mathcal{U}) has a cluster point in X.

THEOREM 5. If (X, \mathcal{F}) is a connected completely regular topological space, then there exists a precompact precorrect uniformity \mathcal{U} on X with an open base such that $\mathcal{F}(\mathcal{U}) = \mathcal{F}$ and every filter is weakly Cauchy.

PROOF. Let $\widehat{\sigma}$ be a proximity on X such that $\mathscr{F}(\widehat{\sigma}) = \mathscr{F}$. Let $\mathscr{U}_1(\widehat{\sigma})$ be an element of $H(\widehat{\sigma})$. Note that $\mathscr{U}_1(\widehat{\sigma})$ exists by Theorem 3. Let $U \in \mathscr{U}_1(\widehat{\sigma})$. Then there exist sets $A \subset X$ and $B \subset X$ such that $U \supset U_{A, B} \supset U_{\overline{A}, \overline{B}}$. But since \mathscr{F} is connected, there exists $x_0 \in (X - (\overline{A} \cup \overline{B}))$: so that $U_{\overline{A}, \overline{B}}[x_0] = X$. Hence every filter on X is weakly Cauchy with respect to \mathscr{U} .

THEOREM 6. A precorrect space is compact iff it is complete and precompact.

PROOF. This is an immediate consequence of Theorem 4 in [4] and the easily established fact namely that every precorrect uniform space is a symmetric generalized uniform space (cf. [1]).

THEOREM 7. A completely regular topological space is compact if it is complete with respect to every compatible precorrect uniformity on X.

PROOF. This is an immediate consequence of the Lemma on page 5 in [3] and Theorem 6 above.

Trinity College

REFERENCES

- A. G. Mordkovič, Test for the correctness of a uniform space. Soviet Math. Dokl., 7 (1966), pp. 915—917.
- [2] C. J. Mozzochi, A partial generalization of a theorem of Hursch, CMUC Commentationes Math. Univ. Carolinae, 9 (1968) pp. 157—159.
- [3] C. J. Mozzochi, A correct system of axioms for a symmetric generalized uniform space (to appear) Math. Scand.
- [4] C. J. Mozzochi, On the completeness of a symmetric generalized uniform space (pending) Math. Scand.
- [5] C. J. Mozzochi, A generalization of a theorem of Alfsen and Fensiad (pending) Math. Scand.
- [6] W. J. Thron, Topological Structures, Holt, Rinehart, and Winston, New York, 1966.