A NOTE ON EXTENSIONS OF TOPOLOGIES

By Duk Su Oh

In [1], L. Levine introduced the concept of the simple extension and investigated some topological properties which is preserved by the simple extension. Some results of L. Levine was extended by Carlos J. R. Borges [2], that is, the necessary and sufficient conditions for the simple extension of topology \mathscr{F} to inberit complete regularity, hereditary normality, perfect normality, hereditary paracompactness, stratifiability, normality, paracompactness, Lindelöf, compactness and countable compactness from \mathscr{T}.

The purpose of this paper is to determine the followings;
(i) the necessary and sufficient condition for finite or infinite extension to be a simple extension.
(ii) the relation between the simple extension of product space and the product of simple extensions in the case of finite product.
(iii) the quasi pseudo metrizability of extension of topology \mathscr{F}.

DEFINITION. For a given topology \mathscr{T} on a set X, the topology $\{U \cup(V \cap A)$ $\{U, V \in \mathscr{G}\}$, where A is a subset of X, is called a simple extension of \mathscr{F} and denoted by $\mathscr{G}(A)$. [2]

It follows that $\mathscr{T}(A)$ is the topology with $\mathscr{T} \cup\{U \cap A \mid U \in \mathscr{F}\}$ as subbase.
Let \mathscr{T} be a topology on X and $a=\left\{A_{\alpha} \mid \alpha \in \Delta\right\}$ be a family of subsets of X, and let $\mathscr{T}_{A_{\alpha}}$ denotes the topology $\left\{A_{\alpha} \cap U \mid U \in \mathscr{F}\right\} \cup\{X\}$ for each $A_{\alpha} \in \mathscr{C}$. Then there exists a topology on X with $\mathscr{T} \cup \cup_{\alpha \in \Delta} \mathscr{F}_{A_{\alpha}}$ as subbase. We define this the exten. iion of \mathscr{T} by $o t$ and denote this $\mathscr{F}(a)$. $\mathscr{T}(a)$ is called finite extension or infinite extension according as Δ is finite or infinite. It follows that $\mathscr{T}(a)=\mathscr{T}\left(A_{1}\right)\left(A_{2}\right)$ $\cdots\left(A_{n}\right)$ if $\Delta=\{1,2, \cdots, n\}$.

For a subset M of X, we shall denote the complement $X-M$ by M^{\prime} and the closure of M relative to the topology \mathscr{G} by \bar{M}.

THEOREM 1. Let $\left.a=\left\{A_{\alpha}\right\} \alpha \in \Delta\right\}$ be a pairwise disjoint family of subsets of a topological space (X, \mathscr{T}) and let $A=\cup_{\alpha \in \Delta} A_{\alpha} . \quad$ Then $\mathscr{F}(O t)=\mathscr{T}(A)$ iff $A_{\alpha} \cap \overline{A-A_{\alpha}}=\theta$ for each $\alpha \in \Delta$.

PROOF. Suppose $A \alpha\urcorner \overline{A-A_{\alpha}}=\theta$ for each $\alpha \in \Delta$. Clearly $\mathscr{T}(\alpha) \supset \mathscr{T}(A)$. To prove $\mathscr{F}(o t) \subset \mathscr{F}(A)$, it is sufficient to show $U \cap A_{\alpha} \in \mathscr{F}(A)$ for each $U \in \mathscr{F}$ and each α $\epsilon \Delta$. If $x \in U \cap A_{\alpha}$, there exists an open neighborhood O_{x} of x relative to the topology \mathscr{F} such that $O_{x} \cap A_{\alpha} \subset U \cap A_{\alpha}$ and $O_{x} \cap\left(A-A_{\alpha}\right)=\theta$. Let $W_{\alpha}=\cup\left\{O_{x} \mid x \in U \cap A_{\alpha}\right\}$, then $W_{\alpha} \cap A=W_{\alpha} \cap A_{\alpha}=U \cap A_{\alpha}$, and hence $U \cap A_{\alpha} \in \mathscr{F}(A)$

Conversely, if $\mathscr{T}(\alpha)=\mathscr{T}(A)$, then $A_{\alpha} \in \mathscr{F}(A)$ for all $\alpha \in \Delta$, and A_{α} is represented by $A_{\alpha}=U \cup(V \cap A)$ for some $U, V \in \mathscr{S}$. From the fact α is pairwise disjoint, it follows that $V \cap\left(A-A_{\alpha}\right)=\theta$, and hence $\left(A-A_{\alpha}\right) \cap(U \cup V)=\theta$. It follows that $(U \cup V)^{\prime}=A-A_{\alpha}$, and consequently $A_{\alpha} \cap \overline{A-A_{\alpha}^{-}}=\theta$, since $A_{\alpha} \subset U \cup V$.

COROLLARY 2. If $o t=\left\{A_{\alpha} \mid \alpha \in \Delta\right\}$ is a discrete family of a topological space (X, \mathscr{T}), then $\mathscr{F}(O)=\mathscr{I}(A)$, where $A=\cup_{\alpha \in \Delta} A_{\alpha}$.

PROOF. This is an immediate consequence of above theorem.
The following ways are also possible. For each $U \in \mathscr{T}$ and each $\alpha \in \Delta$, we have $U \cap A_{\alpha}=U \cap A_{\alpha} \cap\left(U_{\beta \neq \alpha} \bar{A}_{\beta}\right)^{\prime}=A \cap U \cap\left(U_{\beta \neq \alpha} A_{\beta}\right)^{\prime}$. Since a is a discrete family, it holds $\cup_{\beta \neq \alpha} \bar{A}_{\beta}=\overline{\bigcup_{\beta \neq \alpha} A_{\beta}}$, and consequently $U \cap A_{\alpha} \in \mathscr{F}(A)$.

COROLLARY 3. Let $a=\left\{A_{n} \mid n \in N\right\}$ be a pairwise disjoint family of subsets of a top. ological spaie (X, \mathscr{J}), where $N=\{1,2, \cdots, n\}, A=\cup_{n \in N} A_{n^{\prime}}$. Then $\mathscr{T}\left(A_{i_{1}}\right)\left(A_{i_{2}}\right)$ $\cdots\left(A_{i_{0}}\right)=\mathscr{J}^{(}(A)$ for all permulation $\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ of $(1,2, \cdots, n)$, iff ot is pairwise seperated.

THEOREM 4. Let $\left(X_{i}, \mathscr{F}_{i}\right)$ be a topological space for $i=1,2, \cdots, n$, and let \mathscr{F} (A) be a simble exlension of \mathscr{T}_{i}, and $\mathscr{T}, \mathscr{F}^{*}$ denole the product topologies
$\prod_{i=1}^{\mathbb{1}}\left\{\left(X_{i}, \mathscr{F}_{i}\right)\right\}, \prod_{i=1}^{B}\left\{\left(X_{i}, \mathscr{F}_{i}\left(A_{i}\right)\right)\right\}$ respectively.
Then(i) $\mathscr{J}\left(\prod_{i=1}^{n} A_{i}\right) \subset \mathscr{T}^{*}$
(ii) $\mathscr{J}^{i=1}\left(\mathrm{II}, A_{i}\right)=\mathscr{F}^{*}$ iff $A_{i} \in \mathscr{J}_{i}$ for each i, whenever $A_{i} \neq X_{i}$.

PROOF (i) Straightforward, since $\prod_{i=1}^{n} A_{i} \in \mathscr{J}^{*}$.
(ii) Suppose that $A_{i} \bar{\epsilon} \mathscr{G}_{i}$ for some i. We will point out that $X_{1} \times \cdots \times X_{i-1} \times A_{i}$ $\times X_{i+1} \times \cdots \times X_{n}$ is a member of \mathscr{T}^{*}, but not a member of $\left.\mathscr{I} \prod_{i=1}^{n} A_{i}\right)$. Let $X_{1} \times$ $\cdots \times X_{i-1} \times A_{i} \times X_{i+1} \times \cdots \times X_{n}=O_{\alpha} \cup\left(O_{\beta} \cap \prod_{i=1}^{n} A_{i}\right)$ for some $O_{\alpha}, O_{\beta} \in \mathscr{T}$ and let us take $a=\left(a_{1}, \cdots, a_{i}, \cdots, a_{n},\right) \in X_{1} \times \cdots \times X_{i-1} \times A_{i} \times X_{i+1} \times \cdots \times X_{n}$ such that $a_{i} \in A_{i}-A_{i}^{0}$ (*), $a_{j} \in X_{j}-A_{j}$ for $j \neq i$. Then, since $a \bar{\epsilon} \prod_{i=1}^{n} A_{i}$, it follows that $a \in O_{\alpha}$. Hence a_{i} $\epsilon P_{i}\left[O_{\alpha}\right] \subset A_{i}$, where P_{i} is the projection of $\prod_{i=1} X_{i}$ to X_{i}. Recalling that the projection of a product space to each of its coordinate space is open, it follows that $a_{i} \in A_{i}^{0}$, which is contradiction. The converse is clear.

If (X, \mathscr{F}) satisfies the second axiom of countability, $(X, \mathscr{F}(A))$ also does, and (X, \mathscr{F}) is quasi-pseudo-metrizable [3]. Hence we have

THEOREM 5. If (X, \mathscr{F}) satisfies the second axiom of countability, $(X, \mathscr{F}$ $(o t))$ is quasi-pseudo-metrizable, where α is a countable family of subsets of X.

Lemma 6. If there is a base \mathcal{E} of (X, \mathcal{I}) satisfying $(a),(X, \mathscr{I})$ is quasi-pseudo metrizable.
(a): for each $x \in X$, there exists a member B_{x} of $\mathcal{D}_{x}=\{B \mid x \in B \in \mathcal{D}\}$ such that $B_{x} \subset B$ for each $B \in \mathscr{N}_{x}$. (i.e. B_{x} is the first element of \mathscr{N}_{x} with the ordering \subset.)

Proof. Setting

$$
p(x, y)=\left\{\begin{array}{l}
1: \text { there exist infinitely many members of } \mathscr{N}_{x}, \text { each of which } \\
\quad \text { does not contain } y, \\
\sum_{n=1}^{N} \frac{1}{2^{n}:} \text { there exist only } N \text { members of } \mathscr{\delta}_{x}, \text { each of which does } \\
\quad \text { not contain } y, \\
0: y \text { belongs to every member of } \mathscr{\delta}_{x},
\end{array}\right.
$$

[^0]it follows that p is a quasi-pseudo-metric on X. It is easily established that the topology determined by p equals to \mathscr{T}.

THEOREM 7. If there is a base α of (X, \mathcal{T}) satisfying (a), and $\alpha=\left\{A_{\alpha}\right.$ $\mid \alpha \in \Delta\}$ is a pairwise disjoint family of swbsets of X such that $A_{\alpha} \cap \overline{A-A}_{\alpha}=\theta$

PROOF. By theorem 1 it follows that $\mathscr{L}^{*}=\mathscr{L} \cup\{B \cap A \mid B \in \mathscr{L}\}$ is a base of $\mathscr{T}(a)$. Let B_{x} be the first element of \mathscr{D}_{x} with the ordering \subset, then $B_{x} \cap A$ or B_{x} is the first element of \mathcal{D}_{x}^{*} according as x belongs to A or not. Therefore $\mathscr{F}(\not \subset)$ is quasi-pseudo-metrizable by lemma 6.

Department of Mathematics Kyungpook University Taegu, Korea.

REFERENCES

[1] N. Levine; Simple extensions of topologies, Amer. Math. Monthly, 71 (1964)
[2] Carlos J. R. Borges; Extentions of topologies, Canadian J. of Math., Vol. XIX, No. 3 (1967)
[3] Duk Su Oh: A note on quasi-uniform spaces, Kyungpook Math. Jour. Vol. 8, No. 2 (1968).

[^0]: (*) A_{i}^{0} is the interior of A_{i} relative to the topology \mathscr{F};

