A NOTE ON QUASI-UNIFORM SPACES

By Duk Su Oh

1. Introduction

In [1], A, Császár introduced quasi-uniform spaces and investigated some properties of it. J. L. Sieber and W. J. Pervin [3], and R.C. Stoltenberg [4] made contributions to the theory of quasi-uniform completion. The purpose of the present note is to determine the followings;

 (i) sufficient condition for a given topological space to be quasi-pseudo-metrizable, using of quasi-pseudo-metrization theorem of quasi-uniformity.

(ii) construction of a completion for arbitrary quasi-uniform space.

If \mathscr{U} is a quasi-uniformity on a set X, \mathscr{U} induces a unique topology \mathscr{T}_u on X consisting of all subsets G of X such that for each $x \in G$, $U[x] \subset G$ for some $U \in \mathscr{U}$. We call \mathscr{T}_u the quasi-uniform topology induced by \mathscr{U} . If \mathscr{L} is a base for \mathscr{U} , we call that \mathscr{U} is generated by \mathscr{L} .

For each function f of X to Y, f_2 is the induced function on $X \times X$ to $Y \times Y$ which is defined by $f_2(x, y) = (f(x), f(y))$. Let (X, \mathcal{U}) and (Y, \mathcal{V}) be quasiuniform spaces. A function $f: X \to Y$ is quasi-uniformly continuous relative to \mathcal{U} and \mathcal{V} , iff $f_2^{-1}[V] \in \mathcal{U}$ for each $V \in \mathcal{V}$. f is quasi-uniform isomorphism iff f is one to one onto Y and both f and f^{-1} are quasi-uniformly continuous.

Every quasi-uniformly continuous function is continuous relative to the quasiuniform topology, hence every quasi-uniform isomorphism is homeomorphism. Consequently, if P is a topological invariant, then P is also a quasi-uniform invariant.

2. Quasi-pseudo-metrization

DEFINITION. A quasi-pseudo-metric on a set X is a non-negative real valued function d of $X \times X$, such that

(i) d(x, x) = 0,

(ii) $d(x, z) + d(z, y) \ge d(x, y)$ for all $x, y, z \in X$.

Let d be a quasi-pseudo-metric on X, and $V_{d,r} = \{(x, y) | d(x, y) < r\}$.

Unless otherwise specified, we adopt the terminology and notation used by Kelley [4].

Then $\{V_{d,r}|r>0\}$ is a base for a quasi-uniformity \mathscr{U} on X, \mathscr{U} is called the quasiuniformity generated by quasi-pseudo-metric d. A quasi-uniformity \mathscr{U} on Xis quasi-pseudo-metrizable iff there exists a quasi-pseudo-metric d on X which generates \mathscr{U} .

LEMMA 2.1. Let $\{U_n \mid n \in \omega\}$, where ω is the set of non-negative integers, be a sequence of subsets of $X \times X$ such that $U_o = X \times X$, each U_n contains Δ_X and $U_{n+1} \circ U_{n+1} \circ U_{n+1} \subset U_n$ for each $n \in \omega$. Then there exists a quasi-pseudo-metric d on X such that $U_n \subset V_{d,2}$ - $n \subset U_{n-1}$ for each positive integer. ([4], 185)

We obtain the following:

LEMMA 2.2. A quasi-uniformity \mathcal{U} on a set X is quasi-pseudo-metrizable iff \mathcal{U} has a countable base.

It follows immediately that if \mathcal{U} is quasi-pseudo-metrizable, \mathcal{T}_{u} is quasi-pseudometrizable. But the converse does not hold in general. It is explained by the following examples;

EXAMPLE 2.3. Let Ω be the first uncountable ordinal and let $X = \{a \mid a = 0 \text{ ordinal}, a < \Omega\}$, $U_a = \{(x, y) \mid x \ge a, y \ge a\} \cup A_X$ for each $a \in X$. Then $\mathscr{L} = \{U_a \mid a \in X\}$ is a base for a quasi-uniformity \mathscr{U} on X. It follows that \mathscr{T}_u is quasi-pseudo-metrizable. But \mathscr{U} has no countable base.

EXAMPLE 2.4. Let X be uncountable set and A be a denumerable subset of X, $B_x = A \cup \{x\}$, $\mathscr{L} = \{B_x | x \in X\}$ and let $S(x) = B_x \times B_x \cup (X - B_x) \times X$, $\mathscr{I} = \{S(x) | x \in X\}$. Then \mathscr{I} is a subbase for a quasi-uniformity \mathscr{U} on X, and \mathscr{L} is a base for a topology \mathscr{T} on X. It follows that \mathscr{U} induces \mathscr{T} by the Lemma 2.5, and that \mathscr{T} is quasi-pseudo metrizable but not pseudo metrizable (Example 2.7). On the other hand, the construction of \mathscr{I} shows that \mathscr{U} has no countable base, hence \mathscr{U} is not quasi-pseudo metrizable.

LEMMA 2.5. Let \mathscr{L} be a base for a topology \mathscr{T} on X, and let $\mathscr{G} = \{S_B | B \in \mathscr{L}\},\$ where $S_B = B \times B \cup (X - B) \times X$. Then the quasi-uniformity \mathscr{U} with \mathscr{S} as a subbase induces \mathscr{T} .

PROOF. It is obvious that $S_B \supset \mathcal{A}_X$, $S_B \circ S_B = S_B$. To show $\mathcal{T} = \mathcal{T}_u$, let $G \in \mathcal{T}$ and $x \in G$. Then $x \in B \subset G$ for some $B \in \mathcal{A}$, therefore $S_B[x] = B \subset G$.

28

On the other hand, let $G \in \mathcal{T}_u$ and $x \in G$. Then $\bigcap_{i=1}^n S_{B_i}[x] \subset G$ for some $S_{B_i} \in \mathcal{S}$, and hence $G \in \mathcal{T}$.

Now, we give a simple proof of Ribeiro's theorem [6] using of Lemma 2.2 and Lemma 2.5.

THEOREM 2.6. If (X, \mathcal{T}) satisfies the second axiom of countability, then (X, \mathcal{T}) is quasi-pseudo metrizable.

PROOF. Let \mathscr{L} be a countable base for \mathscr{T} , and $\mathscr{G} = \{S_B | B \in \mathscr{L}\}$, and let \mathscr{U} is a quasi-uniformity with \mathscr{G} as a subbase. Then \mathscr{U} has a countable base, since \mathscr{G} is countable. Theorefore, \mathscr{U} is quasi-pseudo-metrizable by Lemma 2.2, and hence \mathscr{T}_u is quasi-pseudo metrizable. Lemma 2.5 shows that $\mathscr{T} = \mathscr{T}_u$.

The converse of Theorem 2.6 is not valid.

EXAMPLE 2.7. Let X be a uncountable set and A be a denumerable subset of X, set

$$d(x, y) = \begin{cases} 0 : x = y, \text{ or } x \in A, y \in A, \text{ or } x \in X - A, y \in A. \\ 1 : x \in A, y \in X - A, \text{ or } x \in X - A, y \in X - A. \end{cases}$$

Then d is a quasi-pseudo metric but not a pseudo metric, and the topolgy \mathcal{T}_d induced by d has no countable base. Moreover \mathcal{T}_d is not pseudo metrizable.

3. Completeness

In the paper [3], J.L. Sieber and W.J. Pervin left open the question of the existence of a non-trivial completion for an arbitrary quasi-uniform space. It is well known that every uniform space has a completion. This theorem was accomplished using of pseudo-metrics, minimal Cauchy filters, and Cauchy filter bases, respectively. Since quasi-uniformity and quasi-pseudo-metric need not satisfy symmetric law, we can't accomplish the corresponding theorem for quasi-uniform space using of above methods.

R.A. Stoltenberg [5] answered Sieber and Pervin's problem, but in case that a concrete completion for a given quasi-uniform space is needed, Stoltenberg's method is rather complicated. In this section, we answer this problem by a simple construction.

DEFINITION. [3] Let (X, \mathcal{U}) be a quasi-uniform space.

(i) A filter \mathscr{F} in (X, \mathscr{U}) is a Caucy filter iff for each $U \in \mathscr{U}$, there exists $x \in X$ such that $U[x] \in \mathscr{F}$.

(ii) A filter \mathcal{F} in (X, \mathcal{U}) converges to $x \in X$ iff $\{U[x] | U \in \mathcal{U}\} \subset \mathcal{F}$.

(iii) (X, \mathscr{U}) is complete iff each Cauchy filter in X converges to a point of X. (iv) A completion of (X, \mathscr{U}) is a pair $((X^*, \mathscr{U}^*), f)$ such that (X^*, \mathscr{U}^*) is a complete quasi-uniform space and f is a quasi-uniform isomorphism of (X, \mathscr{U}) onto a dense subspace of (X^*, \mathscr{U}^*) .

THEOREM 3.1. Let (X, \mathcal{U}) be a quasi-uniform space, and a be an arbitrary cardinal number so that $a \ge |X|^{(1)}$. Then there exists a quasi-uniform completion $((X^*, \mathcal{U}^*), f)$ of (X, \mathcal{U}) such that $|X^*| = a$.

PROOF. Let A be a disjoint set from X such that |A| = a, and let $X^* = X \cup A$. Setting $\mathscr{L} = \{U \cup A \times X^* | U \in \mathscr{U}\}$, it follows that \mathscr{L} is a base for a quasiuniformity on X^* . For,

- (a) $U \cup A \times X^*$ contains the diagonal of X^* ,
- (b) $(U \cup A \times X^*) \cap (V \cup A \times X^*) = (U \cap V) \cup A \times X^*$,
- (c) for each $U \cup A \times X^* \in \mathcal{L}$, choose $V \in \mathcal{U}$ such that

 $V \circ V \subset U$, then $(V \cup A \times X^*) \circ (V \cup A \times X^*) \subset U \cup A \times X^*$.

Let \mathscr{U}^* be the quasi-uniformity on X^* generated by \mathscr{U} . The construction of \mathscr{U}^* shows that (X^*, \mathscr{U}^*) is a complete quasi-uniform space. In fact, every Cauchy filter in (X^*, \mathscr{U}^*) converges to an arbitrary point of A. For each $U^* \in \mathscr{U}^*$, $U^* \cap X \times X \in \mathscr{U}$ and hence subspace $X^* - A$ of X^* is (X, \mathscr{U}) , that is, $(X, \mathscr{U}) = (X, \mathscr{U}^* \cap X \times X)$. Therefore, (X, \mathscr{U}) is quasi-uniformly isomorphic to (X^*, \mathscr{U}^*) by identity mapping f. It is clear that the closure of $X^* - A$ is X^* . Thus $((X^*, \mathscr{U}^*), f)$ is a completion of (X, \mathscr{U}) , and $|X^*| = \mathfrak{a}$.

Department of Mathematics Kyungpook University Taegu, Korea

⁽¹⁾ |X| denotes the cardinal number of X.

REFERENCES

- [1] A. Csaszar: Fondements de la topologie générale, Paris, Gauthier-Villas (1960).
- [2] W.J. Pervin; Quasi-uniformization of topological spaces, Math. Ann., 147 (1962).
- [3] J. L. Sieber and W. J. Pervin; Completeness in quasi-uniform spaces. Math. Ann., 158 (1965).
- [4] J.L. Kelley; General topology, New Pork, Van Nostrand (1955).
- [5] R.A. Stoltenberg; A completion for a quasi-uniform space, Proc. of A. M. S. 18-5 (1967).
- [6] H. Ribeiro; Sur les éspaces à métrique faible, Portugal. Math., 4 (1943).