TOTALLY UMBILICAL HYPERSURFACES OF THE ALMOST EINSTEIN SPACE

By HONG-SUH PARK

Introduction

Recently in a locally product Riemannian manifold, M. Okumura [1] (*) tried to prove the totally umbilical hypersurface with constant mean curvature to be isometric with a sphere and obtained some results about the totally umbilical hypersurfaces with constant mean curvature.

In the totally umbilical hypersurface with the non-constant mean curvature, however, there does not exist above mentioned ones. In the present paper, the author tries to discuss the properties of the totally unbilical hypersurfaces with non-constant mean curvature.

We shall devote § 1, to preliminaries. In § 2, we obtain the mean curvature and scalar curvature of the totally umbilical hypersurfaces in the special kind of locally produt Riemannian manifolds. In § 3, we find some properties of the totally umbilical hypersurfaces in the almost Einstein space.

§ 1. Preliminaries

Let there be given an (n+1)-dimensional locally product orientable Riemannian manifold \overline{M}^{n+1} with locally coordinates $\{X^{\lambda}\}$, Then, by definition, there exist a sys tem of coordinate neighbourhoods $\{U_{\alpha}\}$ such that in each U_{α} the first fundamental form of \overline{M}^{n+1} is given by

(1.1)
$$ds^{2} = \sum_{a,b=1}^{p} G_{ab}(X^{c}) dX^{a} dX^{b} + \sum_{t,s}^{q} G_{st}(X^{r}) dX^{s} dX^{t},$$

$$p \ge 2, \quad q \ge 2 \qquad p+q=n+1,$$

and in $U_{\alpha\cap}U_{\beta}$ the coordinate transformation $(X^a, X^t) \rightarrow (X^{a'}, X^{t'})$ is givn by

$$X^{a'} = X^{a'}(X^a), \quad X^{t'} = X^{t'}(X^t).$$

If we define F^{λ}_{μ} by

$$(1.2) (F_{\mu}^{\lambda}) = \begin{pmatrix} \delta_b^a & 0 \\ 0 & -\delta_t^s \end{pmatrix},$$

^(*) Numbers in brackets refer to references at the end of the paper.

$$a, b=1, 2, \dots, p,$$
 $s, t=1, 2, \dots, q,$

in each U_{α} , then F_{μ}^{λ} is a tensor field over \overline{M}^{n+1} and satisfies

$$(1.3) F_{\mu}^{\lambda} F_{\nu}^{\mu} = \delta_{\nu}^{\lambda},$$

$$(1.4) F_{\lambda\mu} = G_{\nu\mu} F^{\nu}_{\lambda} = F_{\mu\lambda},$$

$$(1.5) \qquad \qquad \overline{\nabla}_{\mu} F_{\nu}^{\lambda} = 0,$$

where ∇_{μ} denote the operator of the Riemannian covariant derivative with respect to $G_{\nu\mu}$, (1.3) shows that F^{λ}_{μ} assigns an almost product structure of \overline{M}^{n+1} .

Let M^n be orientable hypersurface of \overline{M}^{n+1} represented parametrically by

$$X^{\lambda} = X^{\lambda}(x^h)$$
.

where $\{x^h\}$ are locally coordinates of M^n . We put $B_i^{\lambda} = \partial X^{\lambda}/\partial x_i$, then B_i^{λ} (i=1, 2,3,..., n) are linearly independent tangent vectors at each point of M^n .

The induced Riemannian metric g_{ii} of M^n is given by

$$(1.6) g_{ji} = G_{\lambda\mu}B_j^{\lambda}B_i^{\mu}.$$

If C_{λ} are the contravariant components of the unit vector normal to M^n , then we get

(1.7)
$$G_{\lambda\mu}B_h^{\lambda}C^{\mu}=0, \quad G_{\lambda\mu}C^{\lambda}C^{\mu}=1.$$

The transformations $F^{\lambda}_{\mu}B^{\mu}_{i}$ and $F^{\lambda}_{\mu}C^{\mu}$ can be expressed as linear combinations of B^{λ}_{i} and C^{λ}_{i} . We put

(1.8)
$$F^{\lambda}_{\mu}B^{\mu}_{i}=f^{h}_{i}B^{\lambda}_{h}+f_{i}C^{\lambda},$$

$$(1.9) F_{\mu}^{\lambda}C^{\mu}=f^{h}B_{h}^{\lambda}+fC^{\lambda},$$

from which we have obviously

$$(1.10) f_i^h = F_\mu^\lambda B_\lambda^h B_i^\mu,$$

$$(1.11) f_i = F^{\lambda}_{\mu} B^{\mu}_i C_{\lambda},$$

$$(1, 12) f = F_u^{\lambda} C_{\lambda} C^{\mu},$$

where we denote by $(B_{\lambda}^{i}, C_{\lambda})$ the dual basis of $(B_{i}^{\lambda}, C^{\lambda})$.

Moreover we have the following

(1.13)
$$f_{ji} = g_{ih} f_j^h = f_{ij},$$

$$(1.14) f_i^h f_h^j = \delta_i^j - f^j f_i,$$

(1.15)
$$f_i^h f_h = -f f_i$$
, $f^i f_i^h = -f f^h$,

(1.16)
$$f_i f^i = 1 - f^2$$
,

(1.17)
$$f_i^i = (p-q)-f_i$$

If we denote ∇_j the operator of covariant differentiation along the M^n , we have the equation of Gauss^(*)

(1.18)
$$\nabla_{j}B_{i}^{\lambda} \stackrel{\text{def}}{==} \partial_{j}B_{i}^{\lambda} + B_{j}^{\mu}B_{i}^{\nu} \left\{ \frac{\lambda}{\mu\nu} \right\} - B_{h}^{\lambda} \left\{ \frac{\overline{h}}{ji} \right\} = H_{ji}C^{\lambda},$$

where $\begin{Bmatrix} h \\ ji \end{Bmatrix}$ and $\begin{Bmatrix} \overline{k} \\ \mu \lambda \end{Bmatrix}$ are the Christoffel symbols formed from g_{ji} and $G_{\mu\lambda}$ respectively, and H_{ji} are components of the second fundamental tensor of M^n .

We have also the equation of Weingarten

$$(1.19) \qquad \nabla_{j}C^{k} = \partial_{j}C^{k} + B_{j}^{k}C^{\nu}\left\{\overline{\lambda}\right\} = -H_{j}^{i}B_{i}^{\lambda},$$

where $H_i^i = g^{ih}H_{ih}$.

Differentiating (1.8) and (1.9) covariantely along M^n and transvecting with B_{ek} and C_k respectively, we get the following relations

(1.20)
$$\nabla_{i} f_{i}^{h} = f^{h} H_{ji} + f_{i} H_{j}^{h},$$

$$(1,21) \qquad \nabla_i f_h = f H_{ih} - f_{ih} H_{j}^i,$$

$$(1.22) \nabla_j f = -2f^h H_{jh}.$$

§ 2. Scalar curvature of M^n .

Let M^n be an n-dimensional totally umbilical hypersurface of locally product Riemannian manifold, then it satisfies

$$(2.1) H_{ii} = Hg_{ii}$$

at each point of the M^n , where $H = \frac{1}{n} H_{ji} g^{ji}$ is mean curvature and it is scalar.

From the Codazzi's equation of the M^n

(2.2)
$$\nabla_{j}H_{ih} - \nabla_{i}H_{jh} = B_{j}^{\nu}B_{i}^{\mu}B_{h}^{\lambda}C^{\beta}\overline{R}_{\nu\mu\lambda\beta},$$

where $ar{R}_{
u\mu\lambda\beta}$ are components of curvature tensor in \overline{M}^{n+1} , we have

$$g_{ih}\nabla_{j}H-g_{jh}\nabla_{i}H=B_{j}^{\nu}B_{i}^{\mu}B_{h}^{\lambda}C^{\beta}\bar{R}_{\nu\mu\lambda\beta}.$$

^(*) He call $\nabla_j B_i^k$ the van der Waerden-Bortolotti covariant derivavite of B_i^k along the hypersurface. [3]

Transvecting with g^{ih} , we get

$$(2.3) (n-1) \nabla_{j} H = (G^{\mu\lambda} - C^{\mu}C^{\lambda}) B_{j}^{\nu} C^{\beta} \overline{R}_{\nu\mu\lambda\beta}$$
$$= \overline{R}_{\nu\beta} B_{j}^{\nu} C^{\beta}.$$

On the other hand, a locally product Riemannian space is called an almost Einstein space [2], if its Ricci tensor has the following form

(2.4)
$$\overline{R}_{\nu\beta} = \alpha G_{\nu\beta} + \beta F_{\nu\beta},$$

where α , β being necessarily constant.

Since, in an almost Einstein space, it holds

$$(2.5) \nabla_i H = a f_i,$$

where $a = \beta/(n-1)$.

We can prove the

LEMMA 1. In totally umbilical hypersurface of almost Einstein space, $H \rightleftharpoons constant$.

PROOF. If H = constant, since \overline{M}^{n+1} be almost Einstein space, from (2.5) we have $f_i = 0$ and so $f = \pm 1$ because of (1.16).

On the other hand, making use of (1.21), we have $f_{ih}=fg_{ih}$. These imply that

$$(2.6) f_{ih} = \pm g_{ih}.$$

Substituting (2.6) into (1.8) and (1.9) and regarding that $f_i = 0$,

we have
$$F^{\lambda}_{\mu}B^{\mu}_{i}=\pm B^{\lambda}_{i}$$
,

$$F^{\lambda}_{\mu}C^{\mu}=\pm C^{\lambda}$$
,

from which we obtain

$$F_{\mu}^{\lambda} = \pm \delta_{\mu}^{\lambda}$$

This contradicts the fact F^{λ}_{μ} is non-trivial almost product stucture \overline{M}^{n+1} . So Hcan not be constant over M^n .

Next, we assume that \overline{M}^{n+1} is Einstein locally product space, then $\nabla_j H = 0$. Thus we have the

LEMMA 2. In totally umbilical hypersurface of Einstein locally product space, H = constant.

In totally umbilical hypersurface M^n of locally product Riemannian manifold, we get the following

(2.7)
$$\nabla_j f_i^h = H(f^h g_{ji} + f_i \delta_j^h),$$

(2.8)
$$\nabla_j f_h = (f g_{jh} + f_{jh}).$$

$$(2.9) \qquad \nabla_{i} f = -2H f_{i}.$$

Let R_{ljih} be covariant components of curvature tensor of M^n , then from Gauss' equation for M^n in almost Einstein space \overline{M}^{n+1}

(2.10)
$$R_{ljih} = B_l^{\nu} B_j^{\mu} B_i^{\lambda} B_h^{\beta} \overline{R}_{\nu\mu\lambda\beta} + H^2(g_{ii}g_{lh} - g_{li}g_{jh}).$$

Transvecting with g^{lh}

(2.11)
$$R_{ji} = \alpha g_{ji} + \beta f_{ji} - B_j^{\mu} B_i^{\lambda} C^{\nu} C^{\beta} \overline{R}_{\nu\mu\lambda\beta} + H^2(n-1) g_{ji},$$

and moreover transvecting with g^{ji} , we have

(2.12)
$$R = (n-1)(\alpha + nH^2) + \beta(p-q-2f).$$

Thus, from LEMMA 2, we have

THEOREM 2.1. In totally umbilical hypersurface of Einstein locally product space, R=(n-1) $(\alpha+nH^{\lambda})$ is constant.

§ 3. Totally umbilical hypersurfaces of almost Einstein and Einstein locally product space.

In totally umbilical hypersurface M^n of Einstain locally product space \overline{M}^{n+1} , we have H = constant and

(3.1)
$$\nabla_{j}\nabla_{i}f = 2H^{2}(f_{ji}-fg_{ji}).$$

Again, differentiating covariantly, we get

$$(3.2) \nabla_{j}\nabla_{i}\nabla_{h}f = -H^{2}(2g_{ih}\nabla_{j}f + g_{jh}\nabla_{i}f + g_{ji}\nabla_{h}f),$$

and(*)

(3.3)
$$\pounds g_{ji} = \nabla_j \nabla_i f + \nabla_i \nabla_j f$$

$$= 4H^2 (f_{ii} - f g_{ii}).$$

Hence, in totally umbilical hypersurface M^n of Einstein locally product space

 \overline{M}^{n+1} , we get $\pounds g_{ji} \neq 0$, i.e. $\nabla_j f$ does not become the Killing in M^n .

In fact, if
$$\underset{\mathbf{r}f}{\pounds} g_{ji} = 0$$
, from (3.3) we have
$$f_{ji} - f g_{ji} = 0.$$

Transvecting with g^{ji} , then we have

 $^{^{(*)}}$ £ denotes the operator of Lie derivation with respect to $\nabla_j f$

$$f = \frac{p-q}{n+1}$$
, i.e., f is constant.

This contradicts the fact that f can not be constant. So $\mathcal{L}_{rf} g_{ji} \neq 0$. From (3.2) and Ricci's identity with respect to $\nabla_h f$, we have

(3.4)
$$\mathcal{L}_{rf}^{h} \Big\{ ji \Big\} = \nabla_{j} \nabla_{i} \nabla^{h} f + R_{kji}^{h} \nabla^{k} f$$

$$= -2H^{2} (\delta_{i}^{h} \nabla_{j} f + \delta_{j}^{h} \nabla_{i} f).$$

Substituting (3.4) into the following identity

$$(3.5) \qquad \pounds R_{lji}^{h} = \nabla^{l} \left(\pounds \begin{Bmatrix} h \\ ji \end{Bmatrix} \right) - \nabla^{j} \left(\pounds \begin{Bmatrix} h \\ li \end{Bmatrix} \right),$$

we have

(3.6)
$$\pounds R_{lji}{}^{h} = -2H^{2}(\delta_{i}^{h}\nabla_{l}\nabla_{i}f - \delta_{l}^{h}\nabla_{j}\nabla_{i}f).$$

And contracting h and l

where $C=(n-1)H^2$ is constant. Thus we have

THEOREM 3.1. In totally umbilical hypersurfaces M^n of Einstein locally product space \overline{M}^{n+1} , $\underset{rf}{\pounds R}_{ji} = C \underset{rf}{\pounds g}_{ji}$.

From (3.7), We have

(3.8)
$$(\nabla^{\dot{a}} f) \nabla_{a} R_{ji} + R_{ai} \nabla_{j} \nabla^{a} f + R_{ja} \nabla_{i} \nabla^{a} f$$
$$-cg_{ai} \nabla_{j} \nabla^{a} f - cg_{ja} \nabla_{i} \nabla^{a} f = 0.$$

Transvecting with g^{ji} , it holds

$$(3.9) R_{ji} \nabla^j \nabla^i f = c \Delta f,$$

because of $g^{ji}\nabla_a R_{ji} = \nabla_a R = 0$,

where
$$\Delta f = g_{ji} \nabla^j \nabla^i f$$
.

If we assume that M^n is compact, from Green's theorem, we have

(3.10)
$$\int_{M} {}^{n}R_{ji} \nabla^{j} \nabla^{i} f d\sigma = 0.$$

where $d\sigma$ is volume element.

And in such M^n , if $g^{ji}\nabla_j\nabla_i f \ge 0$ for scalar f, then f is constant [4].

Therfore we know that $g^{ji}\nabla_i\nabla_i f < 0$.

From (3.1), we have

(3.11)
$$f > \frac{p-q}{n+1}$$
.

Thus we conclude

THEOREM 3.2. In compact orientable totally umbilical hypersurfaces of Einstein locally product space,

$$\int_{M}^{n} R_{ji} \nabla^{j} \nabla^{i} f d\sigma = 0 \quad and \quad f > \frac{p-q}{n+1}.$$

Now consider that \overline{M}^{n+1} is an almost Einstein space, from LEMMA 1, $H \rightleftharpoons$

constant and

(3.12)
$$\nabla_{j}\nabla_{i} f = -2af_{j}f_{i} + 2H^{2}(f_{ji} - fg_{ji}).$$

where $a = \frac{\beta}{n-1}$,

moreover

(3.13)
$$\pounds g_{ji} = -4af_j f_i + 4H^2 (f_{ji} - f g_{ji}).$$

Again differentiating (3.12) covariantly, we get by (2.7), (2.8)

$$(3.14) \qquad \nabla_{j}\nabla_{i}\nabla_{h}f = a[(fg_{ji} - f_{ji})\nabla_{h}f + 2(fg_{ih} - f_{ih})\nabla_{j}f + (fg_{hj} - f_{hj})\nabla_{i}f]$$
$$-H^{2}(g_{ji}\nabla_{h}f + 2g_{ih}\nabla_{j}f + g_{hj}\nabla_{i}f)$$

from which and the Ricci's identity with respect to $\nabla_h f$ we have

(3.15)
$$\mathcal{L}_{pf}^{h} \Big\{ j_{i}^{h} \Big\} = \nabla_{j} \nabla_{i} \nabla^{h} f + R_{lj}^{h} \nabla^{l} f$$

$$= -2a (f_{j}^{h} \nabla_{i} f + f_{i}^{h} \nabla_{j} f) + \delta_{j}^{h} \nabla_{i} \rho + \delta_{i}^{h} \nabla_{j} \rho$$

where $\rho_j = \nabla_j [-2(af + H^2)f]$ are gradient.

Substituting (3.15) into (3.5), we have

$$\begin{split} & \pounds R_{lji}^{\ h} = -2a \left[(\nabla_j f) \nabla_l f_i^h + f_j^h \nabla_l \nabla_i f + (\nabla_i f) \nabla_l f_j^h \right] \\ & + \delta_j^h \nabla_l \rho_i + 2a \left[\nabla_l f \right) \nabla_j f_i^h + f_l^h \nabla_j \nabla_i f + (\nabla_i f) \nabla_j f_l^h \right] \\ & - \delta_l^h \nabla_j \rho_i. \end{split}$$

contracting h and l and by (2.7), (2.8), and (2.9),

(3.17)
$$\pounds R_{ji} = (n-1)(af + H^2) \pounds g_{ji} + 8aH^2 [nf_j f_i - (1-f^2)g_{ji}]$$

$$+ 2(af_j f_i - H^2 f_{ji} + H^2 f g_{ji})(p-q).$$

From (3.13), we get

(3.18)
$$\pounds R_{ji} = [(n-1)(af+H^2) - \frac{1}{2}(p-q)] \pounds g_{ji} + 8aH^2[nf_jf_i - (1-f^2)g_{ji}],$$
 and by (1.16)

$$(3.19) \quad g^{ji} \underset{\mathbf{r}f}{\pounds} R_{ji} = A g^{ji} \underset{\mathbf{r}f}{\pounds} g_{ji},$$

where $A = (n-1)(af + H^2) - \frac{1}{2}(p-q)$ is constant.

Hence if $\pounds R_{ji} = 0$, then $\nabla^j \nabla_i f = 0$, therefore $\nabla_j f$ is harmonic vector. Thus we have

THEOREM 3.3. In totally umbilical hypersurface of almost Einstein space, if $\pounds R_{ji}=0$, then $\nabla_j f$ is a harmonic vector, and

$$H^2 = \frac{a(f^2-1)}{(n+1)f}$$

From (3.19)

$$R_{ji}\nabla^{j}\nabla^{i}f = A\Delta f$$

Thus we have

THEOREM 3.4. In compact onentable totally umvilical hypersurface Mⁿ of almost Einstein space

$$\int_{M} R_{ji} \nabla^{j} \nabla^{i} f \delta \sigma = 0 \text{ and } g^{ji} \nabla_{j} \nabla_{i} f < 0$$

Oct. 1967

Junior Institute of Technology

Attached to Chung-Gu College

REFERENCES

- [1] M. Okumura; Totally umbilical hypersurfaces of a locally product Riemannian manifold, Kodai math. Sem. Rep. Vol. 19 (1967), 35~42.
- [2] S. Tachibana; Some theorems on locally product Riemannian manifold, Tohoku Math. Journ. Vol. 12(1960), 281~292.
- [3] K. Yano; Differential geometry on complex and almost complex space, Pergamon press (1965).
- [4] K. Yano and S. Bochner, Curvature and Betti number, Annals of Math. Studies (1953).