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1. Introduction Let us assume that XCI) is the stochastic process defin­

ed in regard to I in T= {O. ± 1•...} by j. L. Doob. [1. p.49J Let us also

assume that XCI) is defined in probability space CO,{l;,P) in which ° is an

abstract set, a is a u-field of subset of 0. and P is a probability measune

in a. Let us again assume that, in CO,a-,P), the expected value ECX') in

regard to the random variable Y is defined if EX=!oY dP exists.

A stochastic process is defined to be strictly stationary if for any integer

k and any choice of k points 11.••• I" in T, the joint distribution of the

random variables X(/I+h) • ...• X(/,,+h) does not depend on h. For a strictly

stationany stochastic process one may establish the following law of large

numbers; for any Borel function g(Xb .... X,,) of k variables such that the

ensemble mean

Elgl = Elg{XC/I + h) • ...• X(/" + h) I<00.
the sample means

1 •
M.(g) = n + 1 "£og{X(/1 + h) • .... X(/" + h)}

converge with probability one to a random variable, donoted by g. Since

the .process is transitive, the limit 9 is identically constant with probftiHty

one, and is equal to the ensemble mean

ECg) = Eg{X(/1 + h)• .... X(t" + h)}.

In case the limit g and ECg) converge, the application of the theory of a

stochastic process may be interest, and worthy of considerations.

A strictly stationary stochastic process X(/) whi.::h is strongl~ engodic

will be defined in relation to all Borel function g(Xb .... X,,) with k variables

(k: positive integer), the sample mean M.(g) conveging to ECg).
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Proving a fact that a strictly stationary stochastic process is mdrically

transitive if it is strongly ergodic may be considered very interesting.

In this case, we give necessary and sufficient conditions in terms of the

characteristic functions of the process that it be strongly ergodic. It is

apparent that random variables XCt l + h), "., XCt. + h) which form a joint

distribution will be defined, regardless of the value of h, as a strictly

stationary stochastic process of order k in relation to all k points tit '.', t..
I

obtained arbitrily from T.

A stochastic process with the mean ergodic of order kCk: positive integer)

will be defined in relation to all k variables Borel function g (XIt •• ', X.) in

which

Elg/' = Elg{X(t1 + h), .'., X(t. + h)} 1'<=, Cl~r~2).

The sample means M.(g) converges to ECg) in r-mean. In other words,

El M"Cg) - ECg) Ir~ 0 when n~ =. Similarly a process which is stro­

ngly ergodic of order k is defined if M"Cg) converges to ECg) as a prob­

arbility value.

The purpose of this paper is to give condititions in terms of character­

istic functions that a stochastic process is mean Ergodic of order k.

2. Results the author obtained are the fodlowings:

Theorem 1. Conditions that a stochastic process stationary of order k is

ergodic of. order k:.

Assume that the random variables XCt) is defined in relation to all t

within T = {O, ±1, ±2, ...}, and k is a positive integer, and that t l , "', tfj

are points within T.

In R.(k-diJllensional Euclidean space), a stochastic function is assumed

to be:

(1) rp(Ub "', u.) = rIR/C~~'x, )dF(Xb "', XJ

of course, here in relation to all real numben U jCi = 1, 2, "', k).

{
rO'X("+h)+"'+O.xc,.+h))}

(2) E e' = rp(UIt .. ', u.), for all hET.
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A characteristic function rp (Uh .. ·• Ub; 7:') in relation to all 7:' belong to

T is assumed to be:

for all hET.

Let us assume 1:::;;:r:::;;:2. Then the sample mean M.(g) converges as a

limit in r-mean in relation to all Borel function g(Xh .. ". Xk ) with E IgIr

<co. If the contents of rp(u h .. ·• uk) and cp(u" .. ·• Uk; 7:') are satisfied. the sa­

mple mean M.(g) converges to the ensemble mean ECg) in r-mean if and

only if

(4) lim ~ 1 ±rp(Ult .... Uk ; 7:') = Irp(ult .... Uk ) 1
2

n.......c:o n r=O

in relation to all real number Ult .... ltk'

Proof. First of all. what is necessary is to prove that given as

g(Xlt ...• Xk) = e'C·'x+ ......,x.) holds in relation to ltlt "', ltk given as real num·

bers, Let yet) = X(f) - X(t + 7:') be a strictly stationary of order k.

The stochastie process

is a wide-sense stationany stochastic process with zero mean by (2) and

(3). and at the same time covariance function

Ry(t) = EY(t) Y*(t + 7:') = cp(Uj, .. '. Uk: 7:') - Icp(Ult " '. Uk) 12

where the asterisk denotes a complex conjugate (2).

In a wide-sense stationary stochastic process.

converges as a limit in quadradic mean in the law of large numbers,

Furthermore. the limit random variable becomes zero if and only if

lim ~ 1 ±Ry(t) = O. the equivalent of lim ~ 1 ±cp(u lt ,. '. Uk: 7:'). Thus
n--l>OO n r=O n~ n '["=0

theorem 1 has been proved for Borel function g which are complex expo­

nentials,

Next. let us assume that g is Borel function with Elgl <co and e)O.
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Then, there is a trigonometric polynomial

g.(Xh ...• Xl) = .£ CUh "', ik)e;(·,,7<'+···+O,.x.)
1,,···.1.=1

such that

Elg - g.l' = I--fu.lg(X) - g,(X) "dF(X) <er.

First of all, let us prove that the limit of mean lim Mn(g) exists.
.-+00

According to Minkowskis inequality
1 1 1

~IMn(g) - M .. (g) 1':S;;EnMn(g) - M.,(g,) " + E7IM.(g.) - M.Cu.) I'
I

+ g;IM..(g.) - M.,(g) I'

where n and m are arbitrary. If n.m--*O
1 1

E7IM.(g.) - M.,(g.) 1'::;:EzIMn(g.) - M ..(g.) 12~ 0,

1 1 • 1

vIMn(g) - Mn(g.) I':::;;: n + 1 ~ E;-lg(X(t)) - g.(X(t)) I'

1
= Er-Ig - g.I'<e.

In other words, if

under the condition e~ 0, it follows that limM,,(g) exist as a limit in

y-mean.
Similary,

1 1 1

~IMn(p) - Egl::;:E71M.Cu) - M"Cu.) I' + g;IM..(g.~ - Eg.1

+ lEg. - Egl. Q.E.D

Corollary 1. A stochastic process satisfying (1). (3) and (4) is mean
ergodic of k.

Together with Birkhott-Khintchine ergodic theorem we immediately

obtain the following theorem.

Theorem 2. Conditions that a strictly stationary stochastic process be str­

ongly ergodic;

A strictly stationary stochastic process X(!), which is defined in relation

to t within T = {O. ±l. "'}, is strongly ergodic if and only if arbitrary

real numbens UIo •••• Uk satisfy (4) in 'P(u h "',uk ) and 'P(U1..... Uk ; 1:") which are
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defined respectively in (2) and (3). It is sometimes of interest to consider

a sequence of sample mean of the form

1 •
(5) M.(g., I) = n + 1 #0 g•• ,(X(/\ + I), ···.X(lk + I»

where the Borel function g", ,(XI' "', Xk) converge in some sense, as n~oo

to a function g(XIo "', Xk ).

Theorem 3. Let (2) and (3) hold. let l~r~2, and let g(XIo •••• Xk) and

g... ,(XIo .... Xk ) for n = 0.1. 2, "', and 1= 0, 1, 2, "', n, be Borel function such

that Elgl' <00. E/U."I' <00,
and

1 • 1

(6) ~~~ n + 1 {;oE;-Ig... - U/' = O.

Then the sample means M.(g.,,). defined by (5), cocverge in r-mean.

Further, if (4) holds. then they converge in r-mean to ECg).

Proof: The theorem follows immediately from theorem 1 and the inequality

...!.. 1 • I

Er /M.CU.,,) - M"Cg) I'~ n + 1 '&0 E;-Ig." - gf'.

As an instance of a case where this theorem is required, consider the

sample correlation function defined by. for O~v<n.

1 .-.
R.(v) = - L X(/)· X(t + v)

n '=0

which may be written in the form of (5), with I 1 = 0 and 12 = v. if

one defines

{
XIX2 for I = O. 1, .. '. n - v.

g."cXI • X2) = o for t = n ~ v + 1, .. '. n.

It seems disirable to investigate conditions under which the sample means

of a stochastic process which is strictly stationary of order k converge

:strongly, that is, with probability one. By the method of proof of theorem

1 we have not been able to obtain a theorem stating conditions under

which, for any Borel function g, the sample mean M.Cg) converge to E(g)

with probability one.

However, we state st:ch a theorem for bounded Borel function 9 whose
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points of discontinuity form a set of F-measure 0 (when F-measure is k.
by the distribution F given in (1».
Theorem 4. Conditions that a stochastic process stationary of order k be

partially strongly of order k:

Let (2) and (3) hold. Suppose that for all real uJ, .. ·• u. there exist positive
1

constant ko and a such that. for every n,

Then for every bounded Borel function q(Xh • ", X.) whose points of disco­

ntinuity in R. form a set of F-measure the sample means M,,(g) converge

to E(g) with probability one.

All afore-mentioned considerations, may be, without exception, expanded

to the case of continuous parameter stochastic processes. They are expa­

nded to some cases in which a concept of stationary stochastic process is

defined, and the law of large numbers is recognized in relation to a wide­

sense stationbry stochastic processes. If we are to stress this point, we

will see that the following theorem hold true.

Theorem 5. Conditions that a continuous parameter stochastic process

stationary of order k be mean ergodic of order k:

Assume that random variables X(t) has been defined in relation to t .in

T = { - 00 <t<oo}. and tI'··. t. are points in T. Let us also assume that
- )

characteristic function <P(Ub "', u.). connected by corresponding rlistribution

function F(Xb ••.• X.), satisfy

Eei {(o,X(I.+h)+---+u.X().+h»} = <P(Uh ..., It.) for all hET.

Let us further assume that a characteristic function <p(uJ• .... U.; r) •.,

which satisfies (3) in relation to each.. bolong to T. exist. Again. let

US assume that <p(u; ..) is continuous for r at r = 0 in relation to all

It = CUb ...• u.), (r; 1::::r:::;:2).

In relation to a all Borel funcction q(X1, "', Xi). which is

(8) Elg\' =f !g!'dF<oo
Rio
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the sample mean

1 Jr(9) Mr(g) = T og(X(t 1 + t)· ... X(t. + t»dt.

exist, and it converges as a limit in r-mean.

If, (2) and (3) being satisfied, the sample mean MrCh) converges in

r-mean to E(g) only when

(10) lim T1 jTrp(u:7:)d7: = Irp(u) /2
T_co 0

in relation to all u = (Ul> "', u.).

3. Conclusions The author intends to draw a conclusion citing an exa­

mple in which the afore-mentioned items are applied to the stationary

analysis of time series.

Let us assume that X(t) is the sequence of random variables of determ-

ined distribution. It does not have to be independent.

F(X). rp(u), m and (12 mean distribution, characteristic function, mean,

and finite variance.

The sample distribution function

Fn(X) = 1-±Wx(X(t»:
n .=1

lV, (y) = {I (y<x)
o (y>-.x)

The sample characteristic function

1 n
rpn(u) = - ~ei".y(t\

n t=O

The sample mean

1 n
Mn = - 2:: XCi).

n '=0

and the sample variance

In afore-mentioned theorems, we see that the volumes will agree.
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