Strong Condition that a Stationary
Stochastic Process is Ergodic

Yeong-Don Kim

1. Introduction Let us assume that X(¢) is the stochastic process defin-
ed in regard to ¢t in T=1{0, +1,---} by J.L. Doob. {1, p.49] Let us also
assume that X(#) is defined in probability space (Q.&,P) in which Q is an
abstract set, @ is a o-field of subset of Q, and P is a probability measune
in &. Let us again assume that, in (Q.&,P), the expected value E(X) in
regard to the random variable Y is defined if EX= fnY dP cxists.

A stochastic process is defined to be strictly stationary if for any integer
k and any choice of % points ¢,---,f, in T, the joint distribution of the
random variables X{#,+k), -+, X(t,+ %) does not depend on kA For a strictly
stationany stochastic process one may establish the following law of large
numbers; for any Borel function g(Xj, ---, X;) of %k variables such that the
ensemble mean o

Elgl = Elg{X(t; + B), -, X(: + B) | <o,
the sample means

M) =215 01X+ B, X, + 1)
converge with probability one to a random variable, donoted by g. Since
the process is transitive, the limit § is identically constant with probaility
one, and is equal to the ensemble mean

E(g) = Eg{X({, + B, -+, X, + B)}.
In case the limit § and E(g) converge, the application of the theory of a
stochastic process may be interest, and worthy of considerations.

A strictly stationary stochastic process X(#) which is strongly engodic
will be defined in relation to all Borel function g(Xj, ---, X,) with & variables
(k: positive integer), the sample mean M,(¢) conveging to E(g).
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Proving a fact that a strictly stationary stochastic process is metrically
transitive if it is strongly ergodic may be considered very interesting. l

In this case, we give necessary and sufficient conditions in terms of the
characteristic functions of the process that it be strongly ergodic. It is
apparent that random variables X, + &), ---, X(¢, + &) which form a joint
distribution will be defined, regardless of the value of h, as a strictly
stationary stochastic process of order % in relation to all poipts by ooy by
obtained arbitrily from 7.

A ‘st”(;chasti‘c procéss wifh the mean ergodic of order k(k; positivé infeger)
will be defined in relation to all £ variables Borel function ¢ (X;, -+, Xi) in
which

Elgl" = Elg{X(t, + B), -+, X(ts + B} 1"<o0, (1<r<L2).

The sample means M,(g) converges to E(g) in r-mean. In other words,
E\M.(g) — E(g)|I”—> 0 when n—> oo, Similarly a process which is stro-
ngly ergodic of order % is defined if M,(y) converges to E(g) as a prob-
arbility value.

The purpose of this paper is to give condititions in terms of character-
istic functions that a stochastic process is mean Ergodic of order &

2. Results the author obtained are the fodlowings:

Theorem 1. Conditions that a stochastic process stationary of order % is
ergodic of order & . .

Assume that the random variables X(¢) is defined in relation to all ¢
within T = {0, +1, +2,---}, and % is a positive integer, and that ¢, -, ¢
are points within 7.

In R,(k-dimensional Euclidean space), a stochastic function is assumed

to be:
-

M o, - ) =f''‘f‘?ke"(j)—i’ff"x')dF(Xh s XD

of course, here in relation to all real numben #;( =12, -, %),

) E{egu'm'm""'H'X(Hm} =@, - 1), foral h & T.
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A characteristic function ¢ (uy, -, ., 7) in relation to all T belong to
T is assumed to be:

3 E{ei'[u.(X(l.-i-h)—X(t,+h+‘r))+-~+u,(X(t.+h)—X(t.+h+T)}]} =@ (uy, -+ UT)

for all h € T.

Let us assume 1<r<2. Then the sample mean M,(¢) converges as a
limit in #-mean in relation to all Borel function ¢(X, -, X,) with E [g|"
<o, If the contents of ¢(u),---, %) and ¢(u,,---, u,; T) are satisfied, the sa-
mple mean M,(g) converges to the ensemble mean E(g) in r-mean if and

only if
(4) ,I,ET‘I*T_TZZQ‘P(”” oy Uy, T) = l?’(”h Tt uk)lz

in relation to all real number u,, ---, u,.
Proof. First of all, what is necessary is to prove that given as
9(Xy, -+ Xp) = e*@X+ 45X holds in relation to u;, -+, #, given as real num-
bers. Let Y({¥) = X({©) — X(¢t + ) be a strictly stationary of order k.
The stochastic process
Y () = @XntOt-+uXlat D) — @(y,, ---, u,)
is a wide-sense stationany stochastic process with zero mean by (2) and
(3), and at the same time covariance function
R () = EY(OY*(t + 7) = @(uy, -, s T) — 19Qsy -, ) |*
where the asterisk denotes a complex conjugate (2].

In a wide-sense stationary stochastic process,
1 2 _ _
m;oy(t> =M,(g) - E(g)

converges as a limit in quadradic mean in the law of large numbers.
Furthermore, the limit random variable becomes zero if and only if

L1 2 B : 1z )
ll.gi—ﬁrr};oRy<t) =0, the equivalent of }.I_,TOT{—TEO?(”" - s, T). Thus

theorem 1 has been proved for Borel function g which are complex expo-
nentials.

Next, let us assume that g is Borel function with Elg| <co and &>0.
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Then, there is a trigonometric polynomial
ge(X, ) X2 jzz";:gl(,! ey )i k)
such that
Elg - gl = [ 19(X) - 0.00 I"dF(X) <e"

First of all, let us prove that the limit of mean }i\:ﬁ: M., (g) exists.

According to Minkowskis inequality

EFIM,(9) — M@ I"'SEFIM (@) — Ma(g " + E¥IM,(6) — M@V’

+ B IM () — Mu(@) V'

where n and m are arbitrary. If n.m—0

ETIM.(g) — Mo(g) "<E?IM,(g) — Mo(g) 12— 0,

EFIM.(@) - M.9) V<1 5 ET1a(X®) = g.XO)I"
= E_:'Ig - gelr<8-

In other words, if

lim E7 | M,(g) — M.(g)I"<2¢

n, m~>0
under the condition € -0, it follows that limM,(g) exist as a limit in
r-Imean.
Similary,

ETIM,(g) — Eg\ SETIM,(g) ~ M@ 1" + EF\M,(g) — Egi
+ |Eg, — Egl. Q.E.D

Corollary 1. A stochastic process satisfying (1), (3) and (4) is mean
ergodic of k

Together with Birkhott-Khintchine ergodic theorem we immediately
obtain the following theorem. i
Theorem 2. Conditions that a strictly stationary stochastic process be str-
ongly ergodic;

A strictly stationary stochastic process X(#), which is defined in relation
to t within T= {0, *1,---}, is strongly ergodic if and only if arbitrary

real numbens #u,, ---, %, satisfy (4) in ¢(u,, ---#.) and ¢(u,,---, u,; T) which are
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defined respectively in (2) and (3). It is sometimes of interest to consider

a sequence of sample mean of the form
® MG t) = o3 5 00Xty + B, Xl + 1)
=0

where the Borel function ¢,, .(X;, .-+, X;) converge in some sense, as p—>oo
to a function g(X,, -, Xi).

Theorem 3. Let (2) and (3) hold. let 1<r<2, and let g(X,, -+, Xi) and
GuilXy, - Xy) for n=10,1,2,---, and £ =0,1,2, ---, , be Borel function such
that Elgl"<co, Elg,.|"<co,

and

© lims g 5 E 10, — o' =0.
Then the sample means M,(g,.), defined by (5), corverge in r-mean.

Further, if (4) holds, then they converge in r-mean to E(g).

Proof: The theorem follows immediately from theorem 1 and the inequality
L . 1 A s
E’ an(gn.t) - Mn(g), Sﬁgwﬁlgn,t gl -

As an instance of a case where this theorem is required, consider the

sample correlation function defined by, for 0<v<n,
R®) = o= 5 X(®)-X(¢ +)

which may be written in the form of (5), with £;,=0 and #{ =w», if
one defines

XiX; for t=0,1,-,n — ».

Gt (Xis X2) = {
0 fort=n—v+1,--,m
It seems disirable to investigate conditions under which the sample means

of a stochastic process which is strictly stationary of order % converge
strongly, that is, with probability one. By the method of proof of theorem
1 we have not been able to obtain a theorem stating conditions under
which, for any Borel function g, the sample mean M,(g) converge to E(g)
with probability one,

However, we state such a theorem for bounded Borel function ¢ whose
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points of discontinuity form a set of Frmeasure 0 (when F-measure is R,
by the distribution F given in (1)).
Theorem 4. Conditions that a stochastic process stationary of order % be
partially strongly of order k:

Let (2) and (3) hold. Suppose that for all real #,,---,u, there exist positivé
constant %, and a such that, for every #, ?

(7) n -}— 1 ,z_n(l - _n_‘%)(q)(ub”', [/ T) - '?(ﬂ],"', uk)‘z)é

[
n "

Then for every bounded Borel function g(X;, -+, X,) whose points of discd—
ntinuity in R, form a set of F-measure the sample means M,(g) convergé
to E(g) with probability one.

All afore-mentioned considerations, may be, without exception, expanded
to the case of continuous parameter stochastic processes. They are expa-
nded to some cases in which a concept of stationary stochastic process is
defined, and the law of large numbers is recognized in relation to a wide-
sense stationbry stochastic processes. If we are to stress this point, we
will see that the following theorem hold true.

Theorem 5. Conditions that a continuous parameter stochastic process
stationary of order & be mean ergodic of order %:

Assume that random variables X(#) has been defined in relation to f in
T={—ocotloo}, and ¢,,---, 1, are points in T. Let us also assume thaf)
characteristic function és(u,, vy o), connected by cofresponding distfibuti(;n
function F(X,, ---, X,), satisfy

E¢f {sX@ib+-+uXOid} = @(y,, -, ) for all b € T.

Let us further assume that a characteristic function @(u,, -, u;7),,
which satisfies (3) in relation to each v bolong to T, exist. Again, letl
us assume that @(#;7) is continuous for r at =0 in relation to all
= (U, %), (1<r<2).

In relation to a all Borel funcction g(Xi, ---, X)), which is

® Elgt =, lgaF<eo
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the sample mean
. T
@ Mr(o) = [ aXCtr + 0, Xt + D),

exist, and it converges as a limit in 7-mean.
If, (2) and (3) being satisfied, the sample mecan M,(k) converges in

r-mean to E(g) only when

T
(10 lim—%f Plu;T)dT = o) |?
T—0 0
in relation to all # = (uy, -, u,).
3. Conclusions The author intends to draw a conclusion citing an exa-
mple in which the afore-mentioned items are applied to the stationary

analysis of time serics.
Let us assume that X({¢) is the sequence of random variables of determ-

ined distribution. It does not have to be independent.
F(X), (), m and ¢* mean distribution. characteristic function, mecan,
and finite variance.

The sample distribution function

1z - . _ 1 (<o)
F = WL (X)) v, =
(XD 7 ; (X W. () {0 (y>1)

The sample characteristic function
() = _1_, z":emxm.
n i=o
The sample mean
M=+ 5 xo,
n =
and the sample variance
=1 5 x00) - M2
n i=o
In afore-mentioned theorems, we see that the volumes will agree.
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