A Note on the Convex Set

Hanyong Chung

The existence of solutions of many optimization problems has a close connection with the closure of some convex sets in an *n*-dimensional Euclidean space E^n . Suppose that X is a bounded, non-empty convex set in E^n , we define H(p) to be the supporting hyperplane of X which is normal to any nonzero vector p in E^n and put $G(p) = H(p) \cap X$.

It is the purpose of this note to derive a necessary and sufficient condition for set X to be closed without the convexity conditions of the sets G(p). We define the distance between two sets G(p) and G(q) as follows:

$$d(G(p), G(q)) = \inf \{d(x, y) \mid x \in G(p), y \in G(q)\}\$$

Theorem. A necessary and sufficient condition for the bounded, non-empty convex set X to be closed is that

- (1) for every nonzero vector p the set G(p) is closed and non-empty;
- (2) if p_1, p_2, \cdots is a sequence of nonzero vectors converging to some nonzero vector p then

$$\lim d(G(p_i), G(p)) = 0.$$

Proof. The necessary condition: The proof of (1) is obvious. The proof of (2) is as follows: Since the set $G(p_i)$ and G(p) are closed and bounded, there exists a_i which is a point in $G(p_i)$ nearest to the set G(p) for every i = 1, $2, \dots$. Let $d_i = d(a_i, G(p))$. Assuming that there is a $\rho > 0$ and a subsequence k_1, k_2, \dots of $1, 2, \dots$ such that $d_{k_i} \ge \rho$ for all $i = 1, 2, \dots$, it has a subsequence a_{i_1}, a_{i_2}, \dots converging to some point $a \in G(p)$, because the sequence of points a_{k_i}, a_{k_i}, \dots is bounded. For every $x \in X$ we have the scalar product of two vectors a and a

$$a \cdot p = \lim_{i \to \infty} (a_{n_i} \cdot p_{n_i}) \ge \lim_{i \to \infty} (x \cdot p_{n_i}) = x \cdot p$$

which implies that $a \in H(p)$ and contradicts the assumption $a \in G(p)$. Thus

we have $\lim_{i\to\infty} (G(p_i), G(p)) = 0$.

The sufficient condition: Let $a \in X^d$. We know $a \in H(p)$ for some nonzero vector p. If $a \in G(p)$ let b be the point of G(p) nearest to a. Since the set G(p) is closed and $a \neq b$, there exists an $\varepsilon > 0$ such that $d(G(p), G(p_{\varepsilon})) \le |a-b|/2$ where $p_{\varepsilon} = p + \varepsilon(a-b)$. Let $x \in G(p_{\varepsilon})$ and $y \in G(p)$ such that $|x-y| \le |a-b|/2$. We have $p_{\varepsilon} \cdot a \le p_{\varepsilon} \cdot x$ and $p \cdot x \le p \cdot a$; hence $(a-b) \cdot (x-a) \ge 0$. Since the vector a-b is an outward normal to a supporting hyperplane of the convex set G(p) at the point b and since $y \in G(p)$, we have $(a-b) \cdot (b-y) \ge 0$. From the last two inequalities we obtain $|x-y| \ge |a-b|$ which contradicts the relation $|x-y| \le |a-b|/2$. Consequently if $a \in X^d$, then $a \in X^d$

Seoul National University