Some remarks on the E-topologies

Peel Man Kim

Introduction

Let F and G be vector spaces over real or complex field, At first, we concider dual system F and G defined with respect to bilinear form(x,y) \rightarrow <x,y>. We can define the weak topology $\sigma(F,G)$ on F, the polar of a subset A of F, and family \mathfrak{S} of $\sigma(F,G)$ bounded subsets of F then we define topology on G.

The purpose of this note is to prove proposition I. II concerning saturated semi-norms and saturated hull of &

Definition 1

Let F and G be the vector spaces over the real or complex field and $(x, y) \rightarrow \langle x, y \rangle$ a bilinear form defined on $F \times G$. We say that F and G form a dual system with respect to the bilinear form if the following conditions are satisfied

- i) If for $y \in G$ we have $\langle x, y \rangle = 0$ for every $x \in F$, then y = 0
- ii) if for $x \in F$ we have $\langle x, y \rangle = 0$ for every $y \in G$, then x = 0

Definition 2

Given a dual system F,G with respect to the bilinear form $(x,y) \rightarrow \langle x,y \rangle$ we can define a locally convex topology $\sigma(F,G)$ on F and a locally convex topology $\sigma(G,F)$ on G. these are called the weak topologies defined by the dual system F,G.

Remark

A fundamental system of neighborhoods of O in F for the topology $\sigma(F,G)$ is determined by the family of sets such that

 $U_{y_1, y_2, y_n y_n} = \{x \mid | \langle x, y_k \rangle | \leq \varepsilon \}$ where $\varepsilon > 0$ and $(y_k)_{1 \leq k \leq n}$ is a finite family of elements of G.

Definition 3

Suppose that the vector spaces F and G form a dual system with respect to the bilinear form $(x, y) \rightarrow \langle x, y \rangle$, A be a subset of F. Then the polar of A will be the subset A° of G formed by those elements $y \in G$ which satisfy $Re \langle x, y \rangle \leq 1$ for all $x \in {}^{\bullet}$,

The orem 1

If F, G is a dual system and A a balanced subset of F, then $A^{\circ\circ}$ is the balanced, convex, $\sigma(F,G)$ closed hull of A° .

Proof

Let us remark that if A is a balanced subset of F, then A is a balanced, convex set in G, closed for $\sigma(G, F)$ Indeed, if $|\langle x, y \rangle| \le 1$ for $|\lambda| \le 1$, than $|\langle x, y \rangle| = |\lambda| \cdot |\langle x, y \rangle| \le 1$, hence A°is balanced. If $|\langle x, y \rangle| \le 1$, $|\langle x, y \rangle| \le 1$, i. e, A° is convex. For each $|\langle x, y \rangle| \le 1$, i. e, A° is continuous on G for $|\langle x, y \rangle| \le 1$, hence the set $|\langle x, y \rangle| \le 1$ is closed as the inverse image of the closed set $|\langle x, y \rangle| \le 1$ in K. Thus A° $|\langle x, y \rangle| \le 1$ is also closed for $|\langle x, y \rangle| \le 1$ which $|\langle x, y \rangle| \le 1$ is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced, convex and $|\langle x, y \rangle| \le 1$ shows us that A°° is a balanced.

Let us prove that $A^{\circ \circ}$ is the smallest balanced, convex set containing A which is closed for the topology $\sigma(F,G)$. Thus it is enough to show that if B is a balanced, convex, $\sigma(F,G)$ closed set containing A then $B \supset A^{\circ \circ}$.

Indeed, let $a \notin B$, there exists a continuous linear form f on the real space F_0 underlying

the vector space F such that $f(x) < \alpha$ for $x \in B_0$ and $f(a) > \alpha$ Since $(\in B)$, we can choose $\alpha = 1$. Should F happen to be a complex vector space, we can see that $x \to f(x)$ if (ix) is a linear form on F continuous for $\sigma(F,G)$ In any case there exists a $y \in G$ such that f(x) = Re < x, y > 1 and we have Re < x, y > 1 for all $x \in B$ and Re < a, y > 1. Since $A \subset B$, it follows from the first inequality that $g \in G$ and therefore the second inequality implies $a \notin A^{\circ \circ}$

Definition 4

Suppose that the vector spaces F and G form a dual system with respect to the bilinear form $(x, y) \rightarrow \langle x, y \rangle$. Let B be a subset of F. Then the absolute polar of B will be the subset B^a of G formed by these elements $y \in G$ which satisfy $|\langle x, y \rangle| \le 1$ for all $x \in B$

Theorem 2

The absolute polar B^a of a subset B of F is same as the polar A^o of the balanced hull A of B.

Theorem 3

Let B be an arbitrary subset of F, then: a) B^a is a balanced, convex set in G, closed for $\sigma(G, F)$

b) $(\lambda B)^a = \frac{1}{\lambda} B^a$ for $\lambda \in \mathbb{R}$, $\lambda \neq 0$, In particular B^a is absorbing if B is bounded for c (F, G).

Proof

a) Let A be the balanced hull of B, then $B=A^{\circ}$. By the remark of proof of theorem 1 and theorem 2, B^{α} is a balanced, convex set in G, closed for $\sigma(G, F)$.

b) The balanced hull of λB is clearly λA_{\bullet} hence $(\lambda B)^{a} = (\lambda A)^{\circ} = \frac{1}{\lambda} A^{\circ} = \frac{1}{\lambda} B^{a}$.

Furthermore B is bounded iff A is bounded. i. e., iff $A^{\circ}=B^{\sigma}$ is absorbing.

Let \mathfrak{S} be a collection of $\sigma(F, G)$ -bounded subsets of F. Then the absolute polars B^a of the sets $B \in \mathfrak{S}$ form a collection of absorbing, balanced, convex sets in G.

Thus \mathfrak{S} defines a unique locally convex topology on G. We call it the \mathfrak{S} -topology on G by the family of semi-norms q_B where $B \in \mathfrak{S}$ and which are given by

$$q_B(y) = \sup_{x \in B} |\langle x, y \rangle|.$$

Definition 5

Let $q_i(1 \cdot i \quad n)$ be a finite family of seminorms on a vector space E. Then its upper envelop q defined by

$$q(x) = \max_{1 \le i \le n} q_i(x)$$

is also sami-norm on E and we have

$$\{x \mid q(x) = \epsilon\} = \bigcap_{i=1}^{n} \{x \mid q_i(x) \le \epsilon\}$$

$$= \{x \mid q_i(x) \le \epsilon, 1 \le i \le n\}$$

Definition 6

We say that a family of semi-norms on a vector space is saturated if the upper envelop of any finite subfamily also belongs to the family.

Proposition 1

Suppose that the vector spaces F and G form a dual system and let \mathfrak{S} be a collection of balanced, convex, $\sigma(F,G)$ -closed, $\sigma(F,G)$ -bounded subsets of F. Suppose furthermore that given a finite family of sets in \mathfrak{S} , the balanced, convex, $\sigma(F,G)$ closed hull of their union belongs to \mathfrak{S} . Then the family of seminorms $(q_A)_{A\mathfrak{S}}$ is saturated.

Proof

By assumption $A = (\bigcup_{1 \le i \le n} A_i)^{\circ \circ}$ belongs to \mathfrak{S} .

Since $(\bigcup_{1 \le i \le n} A_i)^{\circ \circ}$ is the balanced, convex, σ

(F, G)-closed hull of $\bigcup_{1 \le i \le n} A_{i}$,

$$\bigcup_{1 \le i \le n} A_i \subseteq (\bigcup_{1 \le i \le n} A_i)^{\circ \circ} = A$$

we have

$$q_A(y) = \sup_{x \in A} |\langle x, y \rangle| = \max_{1 \le i \le n} q_{Ai}(y).$$

Therefore $q_A(y)$ is the upper envelop of the family of $q_{Ai}(y)$ belongs to the semi-norms defined on $A_i(i=1, 2, \dots, n)$. The family of semi-norms $(q_A)_A \in \mathfrak{S}$ is saturated.

20 數學教育-1968. 11

Definition 7

Let F and G be a dual system and S a collection of balanced subsets of F. We say that S is saturated if the following conditions are satisfied

- i) Every subset of a set A∈S belongs to S;
- ii) The union of a finite number of sets in **S** belongs to **S**
 - iii) If $\angle \in S$ then $\lambda \angle \in S$ for all $\lambda \neq 0$
- iv) The balanced, convex, $\sigma(F, G)$ -closed hull of every set in \mathfrak{S} belongs to \mathfrak{S}

Definition 8

If $\tilde{\mathfrak{S}}$ is a smallest saturated collection of $\sigma(F,G)$ -closed subset containing \mathfrak{S} , then $\tilde{\mathfrak{S}}$ is called the saturated hull of \mathfrak{S} .

Proposition 2

Let \mathfrak{S} be a collection of $\sigma(F,G)$ -bounded subsets of F. Then there exists a saturated hull $\tilde{\mathfrak{S}}$ of \mathfrak{S} , Moreover \mathfrak{S} -topology on G coincides with the \mathfrak{S} -topology.

Proof

Let $\tilde{\mathfrak{S}}$ be the family of finite union of bolanced convex $\sigma(F,G)$ -closed hull of the sets belonging to \mathfrak{S} .

i) If
$$B\subset (\bigcup_{\nu}A_{\nu})^{\circ\circ}$$
, $B^{\circ}\supset (\bigcap_{\nu}A_{\nu}^{\circ})^{\circ})^{\circ}$

$$=((\bigcup_{\nu} A_{\nu})^{\circ \circ})^{\circ}=(\bigcup_{\nu} A_{\nu})^{\circ \circ \circ}=(\bigcup_{\nu} A_{\nu})^{\circ}$$

Therefore $B \subset B^{\circ \circ} \subset (\bigcup_{\nu} A_{\nu})^{\circ \circ}$.

- ii) It is clear that union of a finite number of sets in § belongs to §.
- iii) If $(\bigcup_{\nu} A_{\nu})^{\circ \circ} \in \mathfrak{S}$ then $\lambda(\bigcup_{\nu} A_{\nu})^{\circ \circ} = \lambda((\bigcup_{\nu} A_{\nu})^{\circ})^{\circ}$ $= (\frac{1}{\lambda} (\bigcup_{\nu} A_{\nu})^{\circ})^{\circ}$ $= ((\lambda \bigcup_{\nu} A_{\nu})^{\circ})^{\circ} = (\bigcup_{\nu} \lambda A_{\nu})^{\circ \circ}$

since $\bigcup_{\nu} \lambda A_{\nu}$ belongs to \mathfrak{S} , $\lambda(\bigcup_{\nu} A_{\nu})^{\circ \circ}$ belongs to \mathfrak{S} .

iv) The balancedconvex $\sigma(F,G)$ -closed hull of every set $(\bigcup A_{\nu})^{\circ\circ}$ belongs to \mathfrak{E} .

It is obvicous that $\tilde{\mathfrak{S}}$ is the smallest saturated collection of $\sigma(F, G)$ -closed subset containing \mathfrak{S} .

Bibliography

- J. Horvath, Topological Vector Spaces, (Lecture Note) 1964.
- 2. J.L. Kelley, I, Namioka, Linear Topological Spaces, 1963.
- 3. 엄장일, 局所凸空間論의 諸問題: 釜大文理大學 報