DAEHAN HWAHAK HWOEJEE Vol. 12, Number 3, 1968 Printed in Republic of Korea

7-Nitroso-8-Hydroxyquinoline-5-Sulfonic Acid의 금속킬레이트 안정도 상수

금속 · 연료 종합 연구소

최규원* · 이동형** · 오준석 · 이광우

(1967. 12. 5. 受理)

Stability of Metal Chelates of 7-Nitroso-8-Hydroxyquinoline-5-Sulfonate

by

Q. WON CHOI', DONG HYUNG LEE", JOON SUK OH, and KWANG WOO LEE

Research Institute of Mining and Metallurgy, Seoul

(Received Dec. 5, 1967)

ABSTRACT

Stabilities of chelates of 7-nitroso-8-hydroxyquinoline-5-sulfonate have been determined for divalent transition metal ions, Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II) by means of the Calvin-Bjerrum technique.

Comparison of these stability constants with those obtained for 8-hydroxyquinoline, and 8-hydroxyquinoline-5-sulfonate shows that the observed differences are essentially the results of the lower basicity of the sulfonated group and different metal-ligand bond.

The divalent metal chelate stability sequence is not in agreement with the reported metal orders for other chelating agents. The stabilities were found to follow the order $Mn(II) < Fe(II) \approx Co(II) > Ni(II) < Cu(II) > Zn(II)$.

서 론

8-히드록시 퀴놀린(옥신=HOx) 및 옥신 유도체는 금 속이온에 대한 좋은 킬레이트제로서 잘 알려져 있으 며, 특히 금속 이온에 대한 선택성을 중가시키기 위 하여 많은 옥신 유도체가 합성되었으며, 또한 이들 리 간드의 금속이온들에 대한 선택성과 특수성을 알기 위 하여 금속 킬레이트의 안정도 상수의 결정등 많은 연 구가 진전되고 있다.

Freiser, Rossotti(1),(2),(3),(4),(5)등은 디옥산-물 혼합

용매 속에서 옥신 및 온신의 메틸기 유도채의 안정도 상수를 측정하였으며, 옥신의 술본기 및 할로겐유도체 에 대하여는 Martell 등 많은 사람들(²),(॰),(॰),(□),(□),(□),(□) 이 측정했다.

본 연구는 7-니트로소-8-히드록시 퀴놀린-5-술폰산 (=NHQS)이 Co(II), Fe(II)에 대하여 예민한 정색 반응을 나타내는 것을 이용하여 이들 금속의 비색정량 법(13),(14)이 이미 보고 되어 있으며, 반면 다른 전이금속 이온에 대한 성질을 조사하기 위하여 Calvin-Bjerrum의 적정법을 사용하여 Mn(II), Fe(II), Co(II), Ni(II), Cu(II), 및 Zn(II)의 NHQS 킬레이트의 안정도 상수를 결정했다.

[&]quot;서울대학교 문리과대학 화학과

^{**}성균관 대학교

실 췸

(1) 시 의

본 연구소에서 사용한 시약은 모두 분석용 시약을 사용하고 모든 용액은 중류하여 탈염한 물을 1시간 이상 질소를 통과시킨 물로서 만들었다. 금속 이온은 해당하는 금속 질산염을 10⁻²M 되게 만들어 저장하고 EDTA 적정법으로 표정했으며 Fe(II)은 염화철(II)-4 수화물을 사용하고 과망간산 카름법에 따라 표정하였다.

이상의 각 금속 이온 용액 일정량을 취하여 1M 질산 칼륨을 넣어 마지막용액이 0.1M 질산칼륨 및 10⁻³M 금 속이온의 용액이 되게 만들어 사용했다.

리간드인 NHQS는 이미 보고한 방법(15)에 의하여 합성하고 물에서 두번 재 결정시켜 경제한 것을 약 3g을 정확히 무게를 달어 0.25M 질산 50.0 ml에 녹이고 1M 질산칼롬용액 200.0 ml을 가하여 2 l로 정확히 묽혀 사용하였다, 0.1N 수산화칼륨 용액은 E. Merck회사의 Titrisol을 포탈르산 수소칼륨으로 표정하였다.

(2) 적정 장치

적정장치는 potentiograph(Metrohm E 336 형)의 pH 최도를 확장하여(5cm/pH), pH=2에서 12까지 0.3-0.6 ml/min.의 적정 속도로 자동 기록하였으며, 전국은 combined glass electrode 불 완충용액(Fisher 제품) 4.00±0.02. 7.00±0.02 및 10.00±0.02을 사용하여 표정하였다.

(3) 적정 과정

10⁻³M 금속이온용액 50.0 ml 과 5×10⁻³M 리간드용액 50.0 ml 혹은 100.0 ml을 적정쎌에 넣고 결소를 용액 내부로 통하면서 0.1N 수산화칼륨 용액을 0.3-0.6 ml/min.의 속도로 가하여 자동기록 하였다. 10⁻³M 금속이 온용액 50.0 ml을 사용하여 얻은 적정곡선은 Fig.1 과 같다.

(4) Calvin-Bjerrum 의 식

약한 산성기와 염기성기를 동시에 갖고 있는 HOx 같은 시약에 대한 안정도 상수의 계산을 H. Freiser가 Calvin-Bjerrum의 식을 사용하였는데 본 연구에서는 이 식을 약간 확장하여 K_{ML} , K_{ML2} , 및 K_{ML3} 의 값까지 계산했다. NHQS의 K_{NH} 및 K_{OH} 의 값은 이미 보고한 전위차 적정에 의해 구한 값을 사용했다.

금속이온파 리간드의 material balance 와 charge balance 둘 표시하는 다음의 식물로부터 M(II)에 불온 리간드(L)의 평균수 #을 계산할 수 있다. 즉

전 금속 농도 $T_M=M^{++}+ML^{+}+ML_2+ML_3^-$ 전 리간드 농도 $T_{HL}=H_3L^{+}+HL+L^{-}+ML^{+}+2ML_2+3ML_3^{-}$

 $2M^{++} + ML^{+} + H^{+} + K^{+} = NO_{3}^{-} + L^{-} + OH^{-} + ML_{3}^{-}$ $NO_{3}^{-} = A + 2T_{M}$

금축 이온에 붙어 있는 리간드의 평균수 $\bar{n} = (T_M - L^-)$ $/T_M$ 는 윗식들에서

$$\begin{split} \tilde{n} &= \frac{1}{T_{M}} \Big[T_{HL} - S \Big(\frac{K_{NH} + H^{*}}{K_{NH} + 2H^{*}} \Big) \Big] \\ L^{*} &= \frac{S \cdot K_{NH} \cdot K_{OH}}{H^{*} (K_{NH} + 2H^{*})} \end{split}$$

 $S=T_{HL}+A-K^{+}+OH^{-}-H^{-}$

이 얼어진다. 여기서 A는 넣어준 질산의 양이다.

(5) 안정도 상수의 계산

각 금속이온에 대하여 수개의 독립적인 적정 목선으로부터 각각 KOH ml-pH 값을 구한 다음, 워의 Calvin-Bjerrum의 식을 사용하여 ñ 및 pL 값을 계산하였으며 이중 대표적인 예의 하나인 Fe(II)에 대한 기본 자료를 Table 1 에 모았다.

각 금속에 대한 \bar{n} -pL 값으로 부터 \bar{n} 에 대하여 pL 값의 그림을 그리면 Fig. 2의 같으며, \bar{n} 의 값이 1/2, 3/2 5/2인 pL의 값, 즉 (pK_{ML}) $pK_{ML\bar{n}}$ $pK_{ML\bar{n}}$ 의 값을 얻어 Table 2에 모았다.

Table 1. n-pL data for Fe(II)-NHQS.

4.926×10⁻⁵ mole Fe(1!)

4.251×10-4 mole NHQS,

6.150×10-4 mole HNO3,

0.1000 N NaOH,

initial volume=150.0ml.

n-pL Data for Fe(II)-NHQS

	7 P			
KOH(ml)	pН	ñ	L-	pL
2. 50	2. 64	0. 26	1.900×10 ⁻⁶	5. 69
3.00	2.68	0.53	2.039	5.66
3.50	2.73	0.98	2. 206	5. 61
4.00	2.78	1.01	2. 468	5.56
4.50	2.84	1. 24	2.782	5.49
5.00	2.91	1.42	3. 242	5.46
5. 25	2-95	1.56	3. 506	5, 31
6.00	3. 11	1.87	4.868	5. 18
6.50	3. 25	2.09	6. 587	5.00
7.00	3.48	2. 35	9.991	4.88
7. 25	3. 56	2. 53	1.298×10 ⁶	

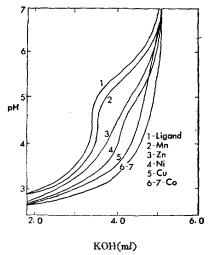


Figure 1. Potentiometric titration curve of metal-NHQS chelates in 0.1 M KNO₃ at 25 ± 0.5 °C.

- 1. ligand (NHQS); 2. Mn(I); 3. Zn(I); 4. Ni(I);
- 5. Cn(I); 6-7, Co(I), Fe(I)

Figure 2. n-pL Curve for M(II)- NHQS

Table 2. Stability constant of M(II)-NHQS

	NHQS			pKav.		
	pK _{NL}	pK _{ML2}	рКило	HOx	HOx 5-SO₃H	NHQS
Μn	4.02	3, 50	_	² 67	5. 36	3.76
Fe	5.75	5.50	4.87		_	5. 63
Co	5.80	5. 44	3. 41	9.83	7.53	5.62
Ni	5.54	4.85	-	10.80	8.39	5. 20
Cu	5.72	5, 39	_	13.11	10.94	5.56
Ζn	4.90	4. 13	_	9.36	7. 16	4. 51

pkav = pK_{ML}+pK_{ML2}; pKav for HOX is abstracted from reference (1), that for HOX-5-SO₃H from reference (9).

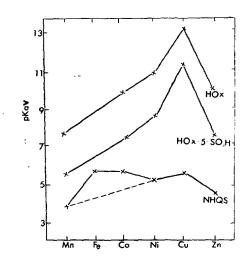


Figure 3. Order of stability

Table 3. Absorption maxima of metal chelates

NHQS (mμ)		Nitroso-R ⁽¹⁶⁾ (mμ)	
Mn(II)	410		
Fe(II)	700	720	
Co(II)	528	520	
Ni(H)	400	nword	
Cu(II)	4 4 8	green	
Zn(II)	440	-	

결과 및 고찰

Irving 과 Witliams 에 의하여 거의 모든 리간드의 화합물에 대하여 안정도 상수는 Mn(II)
Fe(II)
Co(II)
Ni(II)
Cu(II)
Zn(II)의 순서로 됨이 지적되었다.
Fig. 3 에서 Freiser 와 Martell 이 각각 정한 HOx 과
HOx-5-SO₃H의 전이 금속 킬레이트의 안정도 상수는
Irving-Williams 계열에 잘 일치하고 있으나, 본 연구
에서 정한 M(II) - NHQS 칼레이트의 안정도 상수의 서열은 Mn(II)
Fe(II)≈Co(II)>Ni(II)
Cu(II)>Zn(II)
의 순서로서 Fe(II) 및 Co(II)는 Irving-Williams 계열
에서와는 달리 특히 큰 값을 갖고 있다. 다시 말하면
NHQS 리간드는 Fe(II)와 Co(II)에 대하여 대단히 특유한 유기 시약임을 나타낸다.

본견구에서 사용한 NHQS 리간드는 8-hydroxyquinoline 과 1-nitroso-2-naphthol의 작용기를 동시에 갖고 있으며 이들 리간드들의 금속 킬레이트의 가시부분에서의 극대 흡수과장은 Table 3 에서와 같이 Co(II)와 Fe(II)의 NHQS 킬레이트는 Nitroso-R ralt의 킬레이트의 국대 흡수과장과 잘 일치하고 있다. 또한 8-hydroxyquinoline 과 1-nitroso-2-naphthol의 금속킬레이트의

안정도 상수는 약 10²-10³정도 8-hydroxyquinoline 킬 레이트가 더 큰 값을 갖고 있다.

이상의 극대 흡수파장과 모체 리간드킬레이트의 안정 도상수를 비교할때 M(II)-NHQS킬레이트에서는 Fe(II) 와 Co(II)는 Nitroso 쪽의 N에 킬레이트화되고, 기타 금속들은 Quinoline의 N쪽에 킬레이트화될 것으로 생 각된다.

引用文獻

- W. D. Johnston and H. Freiser, J. Am. Chem. Soc., 74, 5239 (1952)
- L. B. Maley and D. P. Mellor, Austral. J. Sci. Res., 2A, 92 (1949)
- H. Irving and H. S. Rosotti, J. Chem. Soc., 2910 (1954)
- 4) R. Nasanen, Acta Chem. Scand., 6, 352 (1952)
- R. Nasanen and U. Pentlinen, *ibid.*, 6, 837 (1952)

- 6) H. Freiser, Analyst, 77, 890 (1952)
- W. D. Johnston and H. Freiser, Anal. Chem. Acta., 11, 201 (1954)
- R. Nasanen and E. Uisitalo, Acta Chem. Sound.,
 112 (1954)
- C. F. Richard, R. L. Custafson and A. E. Martell,
 J. Am. Chem. Soc., 81, 1033 (1959)
- T. H. Chang, et. al, J. Chinese Chem. Soc.,
 11, 125 (1964)
- J. Fresco and H. Freiser, *Inorg. Chem.*, 2, 82 (1963)
- 12) H. Irving and R. Williams, Nature, 162, 746 (1948)
- 13) Dong H. Lee, this Journal, 9, 41 (1965)
- 14) Dong H. Lee, ibid., 9, 101 (1965)
- 15) Dong H. Lee, ibid., 9, 37 (1965)
- M. Grieffing and M. G. Mellon, Anal. Chem.,
 19, 1014 (1949)