NOTE ON INFINITESIMAL CL-TRANSFORMATIONS OF NORMAL AND K-CONTACT METRIC SPACES.

By U-Hang Ki

Y. Tashiro and S. Tachibana showed some characteristic properties of Fubinian and C-Fubinian manifolds in their paper [1], where the notion of C-loxodromes was introduced in an almost contact manifold with affine connection. Recently S. Kotō and M. Nagao have obtained invariant tensors under a CLtransformation [2].

Further K. Takamatsu and H. Mizusawa have shown some relations in a compact normal contact metric space under an infinitesimal CL-transformation [3].
In this note, we shall show that an infinitesimal $C L$-transformation in a normal contact and K-contact metric space has some analogous properties of [3]. In §1, some preliminary notions and identities are given for later use. In §2, we shall deal with a C-loxodrome and a $C L$-transformation. In $\S 3$, infinitesimal $C L$-transformations in a normal contact metric space will be concerned. In $\S 4$, in a K-contact Einstein metric space, an infinitesimal $C L$-transformation necessary projective.

§ 1. Preliminaries

An $n(=2 m+1)$-dimensional differentiable manifold M of class C^{∞} with (φ, ξ, η, g)-structure (or an almost contact metric structure) has been defined by S . Sasaki [4]. By definition it is a manifold with tensor fields $\varphi_{j}^{i}, \xi^{i}, \eta_{i}$ and so called an associated Riemannian metric tensor $g_{j i}$ defined over M which satisfy the following relations:
(1. 1) $\xi^{i} \eta_{i}=1$,
(1. 2) $\operatorname{rank}\left|\varphi_{j}^{i}\right|=n-1$,
(1. 3) $\varphi_{j}^{i} \xi^{j}=0$,
(1. 4) $\varphi_{j}{ }^{i} \eta_{i}=0$,
(1. 5) $\varphi_{j}{ }^{\circ} \varphi_{\tau}{ }^{i}=-\delta_{j}^{i}+\xi^{i} \eta_{j}$,
(1. 6) $\quad g_{j i} \xi^{j}=\eta_{i}$,
(1. 7) $\quad g_{j i} \varphi_{k}{ }^{j} \varphi_{h}{ }^{i}=g_{k h}-\eta_{k} \eta_{h h}$.

On the other hand let M be a differentiable manifold with a contact structure. If we put
(1. 8) $\quad 2 g_{i r} \varphi_{j}^{r}=2 \varphi_{j i}=\partial_{j} \eta_{i}-\partial_{i} \eta_{j}$,
then we can find four tensors $\varphi_{j}{ }^{2}, \xi^{i}, \eta_{i}$ and $g_{j i}$ so that they define an $(\varphi, \xi, \eta$, g)-structure. Such a structure is called a contact metric structure [4].

In an almost contact metric space there are four tensor fields $N_{j i}{ }^{h}, N_{j}^{i}, N_{j i}$ and N_{j} which are the analogue of the N ijenhuis tensor in an almost complex structure [4]. In a contact metric space, $N_{j}{ }^{i}=0$ and $N_{j i}=0$ hold good, $N_{j}{ }^{i}=0$ is equivalent to the fact ξ^{i} is a Killing vector field and $N_{j i}{ }^{h}=0$ yields $N_{j}{ }^{i}=0$.

A contact metric spacc with $N_{j i}=0$ or $N_{j i}{ }^{h}=0$ is called a K-contact metric space or a normal contact metric space respectively. Of course a normal contact metric space is a K-contact metric space and a K-contact metric space is a contact metric space [6]. In the following we consider a notation η^{i} instead of ξ^{i}.

A K-contact metric space in which the Ricci tensor takes the form

$$
\text { (1. 9) } \quad R_{j i}=a g_{j i}+b \eta_{j} \eta_{i}
$$

is called a K-contact η-Einstein space, where a and b become constant ($n>3$), and
(1.10) $a+b=n-1, R=a n+b$
hold good [5], [6].
Let $R_{k j i}{ }^{h}$ be the Riemannian curvature tensor ana put

$$
\begin{equation*}
H_{j i}=\varphi^{k h} R_{k j i h} \text {, then } H_{j i}=-\frac{1}{2} \varphi^{k h} R_{k h j i} \tag{1.11}
\end{equation*}
$$

In a contact metric space, $\varphi_{j i}$ is a skew symmetric closed tensor and

$$
\begin{equation*}
\nabla_{r} \varphi_{j}^{r}=(n-1) \eta_{j} \tag{1.12}
\end{equation*}
$$

holds good, where ∇_{i} denotes the covariant differentiation with respect to the Riemannian connection.

In a K-contact metric space the following identities are valid [6].

$$
\text { (1. 13) } \quad \nabla_{j} \eta_{i}=\varphi_{j i} \text {, }
$$

$$
\begin{equation*}
\nabla_{k} \varphi_{j i}+R_{r k j i} \eta^{r}=0, \tag{1.14}
\end{equation*}
$$

$$
\begin{equation*}
R_{k j i h} \eta^{k} \eta^{j}=0 \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
R_{k j i h} \eta^{k} \eta^{h}=g_{j i}-\eta_{j} \eta_{i} \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
R_{i r} \eta^{r}=(n-1) \eta_{i} \tag{1.17}
\end{equation*}
$$

In a normal contact metric space

$$
\begin{equation*}
\nabla_{k} \varphi_{j i}=\eta_{j} g_{k i}-\eta_{i} g_{k j} \tag{1.18}
\end{equation*}
$$

(1.19) $\quad \eta_{r} R_{k j i}^{r}=\eta_{k} g_{j i}-\eta_{j} g_{k i}$,

$$
\begin{equation*}
\varphi_{j}^{r} R_{r i}=H_{j i}+(n-2) \varphi_{j i}, \tag{1.20}
\end{equation*}
$$

and also (1.13), (1.17) hold good [6].
§ 2. C-loxodromes and infinitesimal $C L$-transformations ([1], [3]).
The equation of a C-loxodrome in a normal contact metric space in terms of any prameter t is
(2. 1) $\frac{\delta^{2} x^{h}}{d t^{2}}=\alpha \frac{d x^{h}}{d t}+a \eta_{j} \varphi_{i}{ }^{h} \frac{d x^{\prime}}{d t} \frac{d x^{2}}{d t}$,
where δ is indicates the covariant differentiation along the curve $x^{i}(t), \alpha$ is a function of t and a is a constant.
Now let us consider a relation between symmetric affine connections in an almost contact manifold. If it carries C-loxodrames to C-loxodromes, then it will be called a CL-transformation. By the usual process it follows that their connections are in the relation

$$
' \Gamma_{j i}^{h}-\Gamma_{j i}^{h}=\rho_{j} \delta_{i}^{h}+\rho_{i} \delta_{j}^{h}+\alpha\left(\eta_{j} \varphi_{i}^{h}+\eta_{i} \varphi_{j}^{h}\right),
$$

where ρ_{i} is a vector field and α is a certain scalar [1].
In a normal contact or K-contact metric space a vector v^{i} is called an infinitesimal $C L$-transformation if it satisfies
(2. 2) $£_{j}\left\{\begin{array}{l}h \\ j i\end{array}\right\}=\rho_{j} \delta_{i}^{h}+\rho_{i} \delta_{j}^{h}+\alpha\left(\eta_{j} \varphi_{i}{ }^{h}+\eta_{i} \varphi_{j}{ }^{h}\right)$,
where $\underset{v}{£}$ is the operator of Lie derivative and $\left\{\begin{array}{l}h \\ j_{i}\end{array}\right\}$ is Riemannian connection. Contracting h and j in (2.2), we sec that ρ_{i} is a gradient.
In a normal contact metric space an infinitesimal CL-transformation hold good
the following relations [3].
(2. 3)
(2. 4)

$$
\eta_{h_{v} £ R_{k j i}=\eta_{j} \nabla_{k} \rho_{i}-\eta_{k} \nabla_{j} \rho_{i}+\alpha\left(\eta_{k} g_{j i}-\eta_{j} g_{k i}\right)}
$$

Taking the Lie derivative of the both sides of (1.19) and substituting (2.4) into the equation thus obtained, we get

$$
\begin{aligned}
R_{k j i}{ }_{v}^{h} \eta_{h}=g_{j i} £ \eta_{v}+\eta_{k} £ g_{j i}-g_{k i} £_{v} \eta_{j}-\eta_{j} £ g_{k i} & -\eta_{j} \nabla_{k} \rho_{i} \\
& +\eta_{k} \nabla_{j} \rho_{i}+\alpha\left(\eta_{j} g_{k i}-\eta_{k} g_{j i}\right) .
\end{aligned}
$$

Transvecting the last equation with $g^{j i}$, we have
(2. 5)

$$
\begin{array}{r}
R_{k}{ }_{v}^{{ }_{\nu}} \eta_{h}=(n-1) £_{v} \eta_{k}+\eta_{k}\left(g^{j i} £_{v} g_{j i}+\nabla_{r} \rho^{r}\right)-\eta^{r}\left(£_{v} g_{k r}+\nabla_{k} \rho_{r}\right) \\
+\alpha \eta_{k}(1-n) .
\end{array}
$$

Finally we shall prepare the following two theorems which have been proved by H. Mizusawa and K. Takamatsu.
LEMMA 2.1. In a normal contact metric space, if v^{i} is an infinitesimal CLtransformation, then the following relation holds good [3].
(2. 6)

$$
£_{v} g_{j i}=-\nabla_{j} o_{i}+\alpha\left(g_{j i}+\eta_{j} \eta_{i}\right) .
$$

LEMMA 2.2. In a normal contact metric space of constant scalar curvature, the relation

$$
\text { (2. 7) } \quad \nabla^{i} H_{j i}=\left[R-(n-1)^{2}\right] \eta_{j}
$$

holds good [6].

§ 3. Infinitesimal $C L$-transformations in a normal contact metric space.

Let v^{i} be an infinitesimal $C L$-transformation in a normal contact metric space. Substituting (2.2) and (2.6) into the identity

$$
\nabla_{k_{v}} g_{v} g_{j i}=g_{h i}{ }_{v}^{\mathcal{E}}\left\{\begin{array}{l}
h \\
k j
\end{array}\right\}+g_{j h_{v}}\left\{\begin{array}{c}
h \\
k i
\end{array}\right\},
$$

and using (1.13), we get
(3. 1)

$$
-\nabla_{k} \nabla_{j} \rho_{i}+\left(g_{j i}+\eta_{j} \eta_{i}\right) \nabla_{k} \alpha=2 \rho_{k} \rho_{j i}+\rho_{j} g_{k i}+\rho_{i} g_{j k^{*}}
$$

By virtue of Ricci identity, this equation is written as
(3. 2)

$$
R_{k j i r} \rho^{r}+\left(g_{j i}+\eta_{j} \eta_{i}\right) \nabla_{k} \alpha-\left(g_{k i}+\eta_{k} \eta_{i}\right) \nabla_{j} \alpha=\rho_{k} g_{j i}-\rho_{j} g_{k i}
$$

Transvecting (3.2) with $g^{k h}$, we have

$$
\begin{equation*}
R_{r i j}{ }^{h} \rho^{r}+\left(g_{j i}+\eta_{j} \eta_{i}\right) \nabla^{h} \alpha-\left(\delta_{i}^{h}+\eta^{h} \eta_{i}\right) \nabla_{j} \alpha=\rho^{h} g_{j i}-\rho_{j} \delta_{i}^{h} \tag{3.3}
\end{equation*}
$$

Moreover, transvecting (3.1) with $g^{i h}$, we get

$$
\begin{equation*}
-\nabla_{k} \nabla_{j} \rho^{h}+\left(\delta_{j}^{h}+\eta^{h} \eta_{j}\right) \nabla_{k} \alpha=2 \rho_{k} \delta_{j}^{h}+\rho_{j} \delta_{k}^{h}-\rho^{h} g_{k j} \tag{3.4}
\end{equation*}
$$

According to (3.3) and (3.4), it follows that
(3. 5)

$$
\begin{array}{r}
\underset{\rho}{£}\left\{\begin{array}{l}
h \\
k j
\end{array}\right\}+2\left(\rho_{k} \delta_{j}^{h}+\rho_{j} \delta_{k}^{h}\right)=\left(\delta_{k}^{h}+\eta^{h} \eta_{k}\right) \nabla_{j} \alpha+\left(\delta_{j}^{h}+\eta^{h} \eta_{j}\right) \nabla_{k} \alpha \\
-\left(g_{j k}+\eta_{j} \eta_{k}\right) \nabla^{h} \alpha .
\end{array}
$$

Thus we have the following
PROPOSITION 3.1. Let v^{i} be an infinitesimal CL-transformation and ρ_{i} be its associated vector. If α is constant then ρ^{i} is an infinitesimal projective transformation.

Next we shall prove the following proposition.
PROPOSITION 3.2.* Let M be a normal contact metric space of constant scalar curvature $R \neq n(n-1)$ and ρ_{i} be an associated vector of an infinitesimal CLtransformation, then $\eta^{r} \rho_{r}=0$.

PROOF. Contracting h and i in (3.3), we have

$$
-R_{r j} \rho^{r}+\eta_{j} \eta_{r} \nabla^{r} \alpha-n \nabla_{j} \alpha=\rho_{j}-n \rho_{j} .
$$

Transvecting the last equation with η^{j} and using of (1.17), we get
(3. 6) $\quad \eta^{r} \nabla_{r} \alpha=0$ for $n>1$.

On the other hand, transvecting (3.2) with $\varphi^{j i}$ and using (1.4) and (1.11), we have
(3. 7)

$$
H_{k r} \rho^{r}=\varphi_{k}^{r}\left(\rho_{r}-\nabla_{r} \alpha\right)
$$

* This result is also obtained by K. Takamatsu and H. Mizusawa in compact case.

Operating ∇^{k} to (3.7) and making use of (1.12) and (3.6), we get
(3. 8)

$$
\rho^{r} \nabla^{i} H_{i r}=(1-n) \rho^{r} \eta_{r} .
$$

According to (3.8) and (2.7), it follows that

$$
[R-n(n-1)] \eta^{r} \rho_{r}=0
$$

This completes the proof by Lemma 2.2.

> Q.E.D.
K. Takamatsu and H. Mizusawa have proved that, in an $n(n>3)$-dimensional compact normal contact metric space, an infinitesimal $C L$-transformation is necessary projective.
Now we shall prove the following theorem.
THEOREM 3.3. In an $n(n>1)$-dimensional normal contact metric space an infinitesimal CL-transformation with $\eta_{r} 0^{r}=0$ is necessary projective.

PROOF. Substituting (2.6) into (2.5), we get
(3. 9) $\quad R_{k}{ }_{k} \oint_{v} \eta_{h}=(n-1) £_{v} \eta_{k}$.

On the other hand (1.17) yields that

$$
R_{k}{ }_{v}^{h} \eta_{v}+\eta_{h_{v}}^{£} R_{k}^{h}=(n-1) £_{v} \eta_{k} .
$$

Thus we have

$$
\begin{equation*}
\eta_{h_{v}} £ R_{k}^{h}=\eta_{h} R_{k r} £ g^{h r}+\eta^{r} £ R_{k r}=0 . \tag{3.10}
\end{equation*}
$$

From (2.6), we obtain

$$
\mathscr{E}_{v} g^{h r}=\nabla^{r} \rho^{h}-\alpha\left(g^{h r}+\eta^{h} \eta^{r}\right),
$$

and substituting this and (2.3) into (3.10), we get

$$
\begin{equation*}
R_{k}^{r} \eta_{h} \nabla_{r} \rho^{h}+(1-n) \eta_{h} \nabla_{k} \rho^{h}+\varphi_{k}^{r} \nabla_{r} \alpha=0 \tag{3.11}
\end{equation*}
$$

By hypothesis, i. e., $\eta_{h} \rho^{h}=0$, we get

$$
\begin{equation*}
\eta_{h} \nabla_{k} \rho^{h}=-\rho^{h} \nabla_{k} \eta_{h}=\rho^{h} \varphi_{h k} . \tag{3.12}
\end{equation*}
$$

Substituting (3.12) into (3.11), we have

$$
\rho^{h} \varphi_{h r} R_{k}^{r}+(1-n) \rho^{h} \varphi_{h k}+\varphi_{k}^{r} \nabla_{r} \alpha=0 .
$$

By (1.20), this equation can be written as

$$
H_{h k} v^{h}-\varphi_{h k} \rho^{h}+\varphi_{k}^{r} \nabla_{r} \alpha=0 .
$$

From (3.7) and the last equation, it follows that

$$
\begin{equation*}
\varphi_{k}^{r} \nabla_{r} \alpha=0 \tag{3.13}
\end{equation*}
$$

Transvecting (3.13) with φ_{j}^{k} and using (1.5) and (3.6), we get

$$
\nabla_{k} \alpha=0, \quad \text { i. e. } \quad \alpha=\text { constant. }
$$

This completes the proof by proposition 3.1.
Q.E.D.

According to proposition 3.2 and theorem 3.3, we have the following.
COROLLARY. In an $n(n>1)$-dimensional normal contact metric space with constant scalar curvature $R \neq n(n-1)$, an infinitesimal CL-transformation is necessary projective.

§ 4. Infinitesimal $C L$-transformations in a K-contact metric space.

Let v^{i} be an infinitesimal $C L$-transformation in a K-contact metric space.
LEMMA 4.1. In a K-contact metric space if v^{i} is an infinitesimal CL-transformation, then (2.3) and (2.4) hold good.

PROOF. From (2.2) we have
(4. 1)

$$
\begin{array}{r}
\nabla_{k}^{£}\left\{\begin{array}{l}
h \\
j i
\end{array}\right\}=\delta_{i}^{h} \nabla_{k} \rho_{j}+\delta_{j}^{h} \nabla_{k} \rho_{i}+\alpha\left(\varphi_{i}{ }^{h} \nabla_{k} \eta_{j}+\eta_{j} \nabla_{k} \varphi_{i}{ }^{h}+\varphi_{j}{ }^{h} \nabla_{k} \eta_{i}\right. \\
\left.+\eta_{i} \nabla_{k} \varphi_{j}^{h}\right)+\left(\eta_{j} \varphi_{i}^{h}+\eta_{i} \varphi_{j}{ }^{h}\right) \nabla_{k} \alpha .
\end{array}
$$

Substituting (4.1) into the following identity

$$
{\underset{v}{ }}_{£ R_{k i j}}{ }^{h}=\nabla_{k} \mathcal{L}_{v}\left\{\begin{array}{l}
h \\
j i
\end{array}\right\}-\nabla_{j_{v}} \sum_{\{ }\left\{\begin{array}{l}
h \\
k i
\end{array}\right\},
$$

and using of (1.13) and (1.14), we get
(4. 2)

$$
\begin{aligned}
{\underset{v}{ }}_{£}^{R_{k j i}}= & \delta_{j}^{h} \nabla_{k i} \rho_{i}-\delta_{k}^{h} \nabla_{j} \rho_{i}+\alpha\left\{2 \varphi_{k j} \varphi_{i}^{h}+\varphi_{k i} \varphi_{j}^{h}-\varphi_{j i} \varphi_{k}^{h}\right. \\
& \left.-\eta_{j} \eta^{r} R_{r k i}{ }^{h}+\eta_{k} \eta^{r} R_{r j i}{ }^{h}-\eta_{i} \eta^{r} R_{r k j}{ }^{h}+\eta_{i} \eta^{r} R_{r j k}^{h}\right\} \\
& +\varphi_{i}^{h}\left(\eta_{j} \nabla_{k} \alpha-\eta_{k} \nabla_{j} \alpha\right)+\eta_{i}\left(\varphi_{j}^{h} \nabla_{k} \alpha-\varphi_{k}^{h} \nabla_{j} \alpha\right) .
\end{aligned}
$$

Contracting h and k in (4.2) and using of (1.16) and (1.17), we have

$$
\begin{aligned}
£_{v} R_{j i}=(1-n) \nabla_{j} \rho_{i}+\alpha\{2(& \left.\left.-g_{j i}+\eta_{j} \eta_{i}\right)+2(n-1) \eta_{j} \eta_{i}\right\} \\
& +\eta_{j} \varphi_{i}^{r} \nabla_{r} \alpha+\eta_{i} \varphi_{j}^{r} \nabla_{r} \alpha .
\end{aligned}
$$

Hence, we have (2.3).
Similarly transvecting (4.2) with η_{h}, we get (2.4).

> Q. E. D.

Transvecting (2.4) with η^{k}, it can be written as
(4. 3)

$$
\eta^{k} \eta_{h_{v}} £ R_{k j i}^{h}=\eta_{j} \eta_{r} \nabla^{r} \rho_{i}-\nabla_{j} \rho_{i}+\alpha\left(g_{j i}-\eta_{j} \eta_{i}\right)
$$

Taking the Lie derivative of the both sides $\sim i(1.16)$ and substituting (4.3) into the equation obtained, we get
(4. 4)

$$
\begin{array}{r}
£_{v}^{£} g_{j i}=\eta_{j} \eta^{r} \nabla_{r} o_{i}-\nabla_{j} o_{i}+\alpha\left(g_{j i}-\eta_{j} \eta_{i}\right)+\eta^{k} R_{k j i}{ }_{v}^{h} \sum_{v} \eta_{h} \\
+\eta_{h} R_{k j i}{ }_{v} £_{v}^{k}+\eta_{j} £_{v} \eta_{i}+\eta_{i} £_{v} \eta_{j}
\end{array}
$$

Next, from (1.9) we have
(4. 5)

$$
{\underset{v}{ } R_{j i}=a £ g_{j i}+b\left(\eta_{i} £_{v} \eta_{j}+\eta_{j} \sum_{v} \eta_{i}\right) ~}
$$

Substituting (2.3), (1.10) and (4.4) into (4.5), we get

$$
\begin{align*}
& (1-n) \nabla_{j} \rho_{i}+2 \alpha\left(n \eta_{j} \eta_{i}-g_{j i}\right)+\eta_{j} \varphi_{i} \nabla_{r} \alpha+\eta_{i} \varphi_{j}^{r} \nabla_{r} \alpha \\
& =a\left\{\eta_{j} \eta^{r} \nabla_{r} \rho_{i}-\nabla_{j} \rho_{i}+\alpha\left(g_{j i}-\eta_{j} \eta_{i}\right)+\eta^{k} R_{k j i}{ }^{k} £_{v} \eta_{h}+\eta_{h} R_{k j i}{ }^{h} £_{v} \eta^{k}\right\} \tag{4.6}\\
& \\
& \quad+(n-1)\left(\eta_{j} £_{v} \eta_{i}+\eta_{i} £_{v} \eta_{j}\right) .
\end{align*}
$$

Transvecting (4.6) with $g^{j i}$, we havc

$$
\begin{equation*}
(1-n) \nabla^{\gamma} \rho_{r}=a\left\{\beta-\nabla^{r} \rho_{r}+\alpha(n-1)\right\}+2(n-1) \eta^{r} £_{v} \eta_{r} \tag{4.7}
\end{equation*}
$$

where

$$
\beta=\eta^{r} \eta^{s} \nabla_{r} \rho_{s}
$$

On the other hand, (1.17) yields that
(4. 8)

$$
\eta_{v}^{j}{\underset{v}{j i}}+R_{j i} £_{v}^{j}=(n-1) £_{v} \eta_{i}
$$

Substituting (2.3) into (4.8) and transvecting with η^{i}, we have

$$
(1-n) \eta^{r} \eta^{s} \nabla_{r} o_{s}+2 \alpha(n-1)=2(n-1) \eta^{r}{\underset{v}{ }}^{\eta_{r}}
$$

or
(4. 9) $\quad 2 \alpha-\beta=2 \eta^{\gamma}{\underset{v}{2}}^{2} \eta_{r} \quad$ for $n>1$.

From (4.7) and (4.9) it follows that

$$
\{a-(n-1)\} \nabla^{r} \rho_{r}=(n-1)(a+2) \alpha+\{a-(n-1)\} \beta .
$$

Suppose $a=n-1$ (i.e. Einstein metric space) then the last equation can be written as $(n-1)^{2} \alpha=0$. Therefore $\alpha=0$ for $n>1$.

Thus we have the following theorem.
THEOREM 4.2. In a K-contact Einstein metric space, an infinitesimal $C L$ transformation is necessary projective.

February 1967
Department of Mathematics
Teacher's College
Kyungpook University

REFERENCES

[1] Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds. Kōdai Math. Sem. Rep. 15(1963)176-183.
[2] S. Kotō and M. Nagao, On invariant tensor under a CL-transformation. Kōdai, Math. Sem. Rep. 18(1966)87-95.
[3] K. Takamatsu and H. Mizusawa, On infinitesimal CL-transformations of compact normal contact metric spaces, Science Rep. of Niig. Univ. A (1966)31-39.
[4] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric structures. Journ. Math. Soc. Japan. 14(1962)249-271.
[5] M. Okumura, On infinitesimal and projective transformations of normal contact spaces. Tōhoku. Math. Journ. 14(1962)398-412.
[6] M. Mizusawa, On infinitesimal transformations of K-contact and normal contact metric spaces. Science Rep. of Niig. Univ. A (1964)5-18.

