RADICAL PROPERTIES AND PARTITIONS OF RINGS

By R. E. Propes and Y. L. Lee

§ 1. Introduction.

Let S be a class of rings. We shall say that a ring R is an S-ring if R is in S. An ideal J of a ring R is called an S-ideal if J is an S-ring. A ring which contains no non-zero S-ideal is said to be S-semi-simple. We shall call S a radical property if the following three conditions hold:

- (A) A homomorphic image of an S-ring is an S-ring.
- (B) Every ring R contains a largest S-ideal S(R).
- (C) The quotient ring R/S(R) is S-semi-simple.

The largest S-ideal S(R) of a ring R is called the S-radical of R; and if S(R) = R, then R is called an S-radical ring [1], [2], [3].

Let S be a radical property, and let a be the class of all simple rings. Then S partitions a into two disjoint classes: a_1 , the upper class, consisting of all S-semi-simple rings of a; and a_2 , the lower class consisting of all S-radical rings of a. Conversely, if (a_1, a_2) is any partition of a with isomorphic rings in the same class, then there exists a radical property S such that every ring in a_1 is an S-semi-simple ring, and every ring in a_2 is an S-radical ring [2], [3]. However, the class of all simple rings is not the only class having this property. The purpose of this paper is to extend the class of rings enjoying this property.

§ 2.

Given a class M of rings with the property that every non-zero ideal of a ring in M can be mapped homomorphically onto some non-zero ring of M, let S_M be the class of all rings which cannot be mapped homomorphically onto any non-zero ring of M. Then S_M , the upper radical property determined by M, is the largest radical property such that every ring in M is semi-simple.

In [4] the lower radical property was constructed for any class α of rings. The construction was as follows: Let α be a class of rings from a category C of rings, and let $\overline{\alpha}$ be the class of all homomorphic images of rings in α . For each ring R in C, let D(R) be the set of all ideals of R. Inductively we define

 $D_{n+1}(R)$ to be the set of all rings which are ideals of rings in $D_n(R)$, i.e., $Q \in D_{n+1}(R)$ if and only if Q is an ideal of a ring in $D_n(R)$. Setting $D(R) = \bigcup_{n=1}^{\infty} D_n(R)$, a ring R is called an S_a -ring if D(R/I) contains a non-zero ring which is isomorphic to a ring in \overline{a} for each ideal I of R and $I \neq R$. Then S_a is the smallest radical property for which every ring in a is a radical ring.

THEOREM. Let a be a class of rings which satisfies the following two conditions:

- (1) If $R \in \mathcal{A}$ and I is a proper ideal of R, then I is isomorphic to R.
- (2) If $R \in \mathcal{A}$ and R/I is not isomorphic to R, then R/I is not isomorphic to any ring in \mathcal{A} .

Then for any radical property S, every non-zero ring in a is either an S-radical ring or an S-semi-simple ring. Moreover, for any partition (a_1, a_2) of a with isomorphic rings in the same class; if S is the upper radical property determined by a_1 or the lower radical property determined by a_2 , then each ring in a_1 is S-semi-simple and each ring in a_2 is S-radical.

NOTE. The following are examples of rings which satisfy (1) and (2).

- 1. The class of all simple rings.
- 2. Any class B of simple rings.
- 3. $\mathcal{B} \cup \{C^{\infty}\}/(\{Z_p : p=2, 3, 5, \cdots\} \cup \{R : R \text{ is isomorphic to } Z_p \text{ for some prime } p\})$, where C^{∞} is the zero ring of integers, and Z_p is the zero ring of integers modulo a prime number p.

We also note:

(3) If a ring R has property (1), and R is isomorphic to a ring R', then R' also has property (1).

In the proof of the theorem we employ the following notation.

 $R \approx R'$ denotes: The rings R and R' are isomorphic.

 $I \leq R$ denotes: I is an ideal of the ring R.

O, (depending upon the context in which it appears), denotes: either the zero ring or the zero ideal of a ring.

PROOF OF THEOREM. By (1), for any radical property S, every non-zero ring R in α is either S-radical or S-semi-simple. For let $0 \neq R \in \alpha$, then since S(R) is an ideal of R, we have by (1) that $S(R) \approx R$, in which case R is S-radical; or S(R) = 0, in which case R is S-semi-simple.

Next, let (a_1, a_2) be a partition of a with isomorphic rings in the same class, and let S_{a_2} be the lower radical property (as constructed in [4] determined by a_2 . Then each ring in a_2 is an S_{a_2} -radical ring. Now if $R \in a \cap S_{a_2}$ then R is an S_{a_2} -radical ring so that D(R/O) contains a non-zero ring which is isomorphic to a ring in \overline{a}_2 . Then D(R) contains a non-zero ring I which is isomorphic to a ring in \overline{a}_2 , i.e., $I \approx A/K$ where $A \in a_2$ and $K \leq A$. Let n be the smallest positive integer such that I is in $D_n(R)$. Then there exists a finite set $\{J_i: i=1, 2, \cdots, n\}$ of rings with $J_i \in D_i(R)$ for $i=1, 2, \cdots, n$ and $J_{i+1} \leq J_i$ for $i=1, \cdots, n-1$ and $J_n=I$. Thus $0 \neq I=J_n \leq J_{n-1} \leq \cdots \leq J_1 \leq R$. By (1) we have $J_1 \approx R$. From (3) and (1) it then follows that $I=J_n \approx J_{n-1} \approx \cdots \approx J_1 \approx R$, i.e., $I\approx R$ and so $R\approx A/K$. But $R\in a$ and $A\in a_2$ so that by (2) we have $A\approx A/K$; whence $R\approx A$ and $R\in a_2$. Hence, we see that every non-zero ring in a_1 is S_{a_2} -semi-simple.

By (1) every non-zero ideal of a ring in α_1 can be mapped homomorphically onto some non-zero rino in α_1 , Hence we can construct the upper radical property S_{α_1} determined by α_1 , and every ring in α_1 is S_{α_1} -semi-simple. Now let $O \neq R$ be in α and be S_{α_1} -semi-simple. Then there exists a non-zero ring A in α_1 and an ideal I of R such that $R/I \cong A$. But $R \in \alpha$ and $A \in \alpha_1$ Therefore, by (2), $R/I \approx R$ and so $R \approx A$, i.e., $R \in \alpha_1$. Thus every non-zero ring in α_2 must be an S_{α_1} -radical ring. This completes the proof of the theorem.

Kansas State University and University of Florida

BIBLIOGRAPHY

- [1] S. Amitsur, A general theory of radicals [, II, III, Amer. J. of Math. (1952), (1954).
- [2] N. H. Divinsky, Rings and radicals, University of Taronto Press, 1965
- [3] A. Kurosh, Radicals of rings and algebras, Mat. Sb., 33 (1953).
- [4] Y. L. Lee, On the construction of lower radical properties of rings (to appear).