RADICAL PROPERTIES AND PARTITIONS OF RINGS

By R. E. Propes and Y. L. Lee

§ 1. Introduction.

Let S be a class of rings. Weshall say that aring R is an S-7ing if R is in
S. An ideal J of a ring R is called an S-ideal if J is an S-ring. A ring which
contains no non-zero S-ideal is said to be S-semi-simple. We shall call S ¢
radical property if the following three conditions hold:

(A) A homomorphic image of an S-ring is an S-ring.

(B) Every ring R contains a largest S-ideal S(R).

(C) The quotient ring R/S(R) is S-semi-simple.

The largest S-ideal S(R) of a ring R is called the S-radical of R; and if S(R)

=R, then R is called an S-radical ring [1], [2], [3].
Let S be a radical property, and let @ be the class of all simple rings. Then

S partitions @ into two disjoint classes: &,, the upper class, consisting of all
S-semi-simple rings of @; and @,, the lower class consisting of all S-radical

rings of @. Conversely, if (@,,@,) is any partition of @ with isomorphic rings

in the same class, then there exists a radical property S such that every ring
In @, is an S-semi-simple ring, and every ring in &, is an S-radical ring [2],
[3]. However, the class of all simple rings is not the only class having this
property. The purpose of this paper is to extend the class of rings enjoying

this property.

S 2.

Given a class M of rings with the property that every non-zero ideal of a ring
in M can be mapped homomorphically onto some non-zero ring of M, let S,,
be the class of all rings which cannot be mapped homomorphically onto any
non-zero ring of M. Then S,,, the upper radical property determined by M, is
the largest radical property such that every ring in M is semi-simple.

In [4] the lower radical property was constructed for any class @ of rings.
The construction was as follows: Let & be a class of rings from a category C of

rings, and let @ be the class of all homomorphic images of rings in &. For
cach ring Rin C, let D .SR) be the set of all idecals of R. Inductively we define
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D _l(R) to be the set of all rings which are ideals of rings in D (R), ie, Q

n..

EDH+1(R) if and only if Q is an ideal of aringin D _(R). Setting D(R) =ML=J1 D

(R), a ring R is called an Ss-ring if D(R/I) contains a non-zcro ring which
is isomorphic to a ring in & for each ideal I of R and I # R. Then Sa is the
smallest radical property for which every ring in € is a radical ring.

THEOREM. Let @ be a class of rings which satisfies the following two

condilions:
(D) If Re@ and I is a proper tdeal of R, then I is isomorphic to R.

(2) If Re@ and R/I is not isomorphic to R, then R/I is not tisomorphic lo
any ring in Q.

Then for any radical property S, every mnon-zero ring in @ is either an S-ra-
dical ring or an S-semi-simple ring. Moreover, for any partition (Q,,QAy) of @
with isomorphic rings in the same class; if S is the upper radical property deter-
mined by @, or the lower radical property determined by @,, then each ring in

@, is S-semi-simple and each ring in @, is S-radical.

NOTE. The following are examples of rings which satisfy (1) and (2).
1. The class of all simple rings.

2. Any class B of simple rings.
3. BU {C“’}/({Zp s p=2, 3, 5, -} U {R: R isisomorphic to Zp for some prime p}),
where C” is the zero ring of integers, and Z , 18 the zero ring of integers modulo

a prime number .

We also note:

(3) If a ring R has property (1), and R is isomorphic to a ring R, then R
also has property (1).

In the proof of the thecorem we employ the following notation.

R ~ R’ denotes: The rings K and R are isomorphic. f

I < R denotes: I is an idcal of the ring R.

O, (depending upon the context in which it appears), denotes: either the
zero ring or the zero ideal of a ring.

PROOF OF THEOREM. By (1), for any radical property S, every non-zero
ring R in @ is either S-radical or S-semi-simple. For let 0 % Re @, then since

S(R) is an ideal of R, wec have by (1) that S(R) =~ R, in which case R is
S-radical; or S(R)=0, in which case R is S-semi-simplec.
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Next, let (dl, @,) be a partition of @ with isomorphic rings in the same
class, and let Ssz, be the lower radical property (as constructed in [4] deter-
mined by ».. Then each ring In @, is an Sa, -radical ring. Now if Rea@ Saq
then R is an Ss.-radical ring so that D(R/0C) contains a non-zcro ring which
is isomorphic to a ring in EZ_?. Then D(R) containsa non-zero ring I which is
isomorphic to a ring in &,, i.e, I~ A/K where Ae@, and K < A. Let n be
the smallest positive integer such that I is in D_(R). Then there exists a finite set
(J; =1, 2. «, n} of rings with J,e D,(R) fori=1, 2,~-,nand J, <], fori=
l,,m—1land J =I. ThusO# I=] <J | <---<J, <R By (1) we have J, =R.
From (3) and (1) it then follows that I=] =] _, == J,~R, i.e, I=R
and so R~ A/K. But Re@ and Aed, so that by (2) we have 4=~ A/K;
whence R~ A and Re@, Hence, we sce that every non-zero ring in a, is Sa
~-semi-simple.

By (1) every non-zero ideal of a ring in @, can be mapped homomorphically
onto some non-zero rino in a,, Hence we can construct the upper radical pro-
perty Sa; determined by &, and every ring in &, is Sas)-semi-simple. Now let
O# R be in @ and be Sg,-semi-simple. Then there exists a non-zero ring A4 in
@, and an ideal I of R such that R/I = A. But Red@. and Ae@, Therefore, by
(2), R/I =R and so R~ A4, i.ec., Redl. Thus every non-zero ring in @, must
be an Sas,-radical ring. This completes the proof of the theorem.
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