HOMEOMORPHISMS ON MANIFOLDS

By Yu-Lee Lee

Let H(X) be the class of all homeomorphisms of a topological space X onto itself. If X is an n-manifold, then X is a strong local homogeneous (S.L.H.), i.e., for every neighborhood of any point x, there exists a subneighborhood U(x)such that for any $z \in U(x)$ there exists g in H(X) with g(x) = z and with g equal to the identity on the complement of U(x). However there exist S. L. H. spaces which are not n-manifolds, for example, the zero-dimensional completely regular spaces [1], the universal curve [2] and the normed linear spaces [1,3]. Therefore being a S. L. H. space does not characterize an n-manifold. Since S. L. H. is defined by the existence of one homeomorphism and moving one point onto another within a small open set, we intend to formulate a similar concept, the existence of a finite family of homeomorphisms which are the identity map outside a small open set and move a set to satisfy certain relations. A topological space X is called finitely complementary (F.C.) if for every neighborhood U of any point x and any open set V such that $x \in Bndry(V)$ there exists a finite subfamily $\{f_1, \dots, f_n\}$ of H(X) such that $\bigcup \{f_i(V): i=1, 2\dots, n\} \bigcup \{x\}$ is an open set and each f_i is the identity map at x and outside U. The purpose of this paper is to prove that every finite-dimensional manifold is L.F.C. This proposition is very useful in studying H(X)[4]. Also we raise many interesting questions about L.F.C.

LEMMA 1. A normed linear space is S.L.H.

PROOF. See [1] or [3].

LEMMA 2. Let U be a unit open ball with center 0 in Euclidean n-space E^n and V be an open set such that $0 \in Bndry(V)$. Let L be a line segment with 0 as one end-point. Then there exists $f \in H(E^n)$ such that F is the identity at 0 and outside U and $0 \in U(L \cap f(V))$.

PROOF. Since $0 \in \text{Bndry }(V)$, there exists a sequence of points $\{p_i\}_{i=1}^{\infty}$ in V such that $\{p_i\}_{i=1}^{\infty}$ converges to 0. Without loss of generality we may assume that the distances $d(0,p_i)$ are strictly decreasing and $p_1 \in L$. Let q_2 be the point in L such that $d(q_2,0)=d(p_2,0)$. Then there is an arc $[q_2,p_2]$ in the sphere with center 0 and radius $d(q_2,0)$. Associate with each point q in $[q_2,p_2]$ an open ball B_q such that $Cl(B_q) \cap \bigcup \{p_i : i \neq 2\} = \emptyset$. Since $[q_2,p_2]$ is compact, there exists

32 Yu-Lee Lee

a subcover $\{B_1, \dots, B_m\}$ such that $p_2 \in B_1$, $q_2 \in B_n$ and $B_i \cap B_{i+1} \neq \emptyset$, $i=1, 2, \dots$, m-1. Let $x_i \in B_i \cap B_{i+1}$ for each $i=1, 2, \dots$, m-1. By LEMMA 1, there exists $f_i \in H(E^n)$, $i=1, 2, \dots$, m such that f_i is the identity at 0 and outside B_i and $f_1(p_2) = x_1$, $f_k(x_{k-1}) = x_k$ for $2 \le k \le m-1$ and $f_m(x_{m-1}) = q_2$. Let $F_2 = f_m \cdot f_{m-1} \cdot \dots$ $f_2 \cdot f_1$. Then F_2 is the identity at 0 and outside $\bigcup_{i=1}^m B_i = V_2$ and $F_2(p_2) = q_2$. Similarly we pick $q_i \in L$ and open sets V_i such that $V_i \cap V_j = \emptyset$ for $i \ne j$, and $F_i \in H(E^n)$ such that F_i is the identity at 0 and outside V_i and $F_i(p_i) = q_i$. Let F be the identity on $E^n \setminus \bigcup_{i=2}^m V_i$ and $F = F_i$ on V_i , $i=2, 3, \dots$. It is now clear that $F \in H(E^n)$, $F(p_i) = q_i$. each q_i lies on L and $0 \in Cl(L \cap f(V))$. Let $p = (x_1, x_2, \dots, x_n) = (\gamma, \theta_2, \dots, \theta_n)$ be any point different from 0 in E^n

Let $p=(x_1, x_2, \dots, x_n)=(\gamma, \theta_2, \dots, \theta_n)$ be any point different from 0 in E'' where $(\gamma, \theta_2, \dots, \theta_n)$ is defined as follows:

$$\gamma = \sqrt{x_1^2 + \dots + x_n^2}$$

$$\sin \theta_j = \frac{x_j}{\sqrt{x_1^2 + \dots + x_j^2}}, \quad 3 \le j \le n \text{ and } -\frac{\pi}{2} < \theta_j < \frac{\pi}{2}$$

$$\cos \theta_2 = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}, \quad \sin \theta_2 = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad -\pi < \theta < \pi.$$

Thus we have

$$x_{1} = \gamma \cos \theta_{n} \cdots \cos \theta_{3} \cos \theta_{2},$$

$$x_{2} = \gamma \cos \theta_{n} \cdots \cos \theta_{4} \cos \theta_{3} \sin \theta_{2},$$

$$x_{3} = \gamma \cos \theta_{n} \cos \theta_{n-1} \cdots \cos \theta_{4} \sin \theta_{3},$$

$$\dots$$

$$x_{n-1} = \gamma \cos \theta_{n} \sin \theta_{n-1},$$

$$x_{n} = \gamma \sin \theta_{n}.$$

This defines a homeomorphism from the product space $(0,\infty)\times(-\pi,\pi)\times\left(-\frac{\pi}{2},\frac{\pi}{2}\right)^{n-2}$ onto $E^n\setminus B$ where $B=\{(x_1,\cdots,x_n)\in E^n\mid \text{there exists an }i\leq n\text{ such that }x_j=0\text{ for all }j\leq i\}$. Thus we have the following lemma.

LEMMA 3. The family of all sets of the form $V(\gamma', \gamma''; \theta_i', \theta_i''; i=2, 3, \cdots, n)$ $= \{(\gamma, \theta_2, \cdots, \theta_n): \gamma_1 < \gamma < \gamma_2, \theta_i' < \theta_i < \theta_i'', i=2, \cdots, n\} \text{ where } -\pi < \theta_2' < \theta_2'' < \pi, -\frac{\pi}{2} < \theta_i'' < \frac{\pi}{2}, i=3, 4, \cdots, n \text{ form a basis for } E^n \setminus B \text{ with the relative topology.}$

LEMMA 4. For each $V(\gamma', \gamma''; \theta_i', \theta''_i; i=2, 3, \cdots, n)$ and $0 < s < \gamma' < \gamma'' < t, -\pi < \xi_2' < \varphi_2' \le \theta_2' < \theta_2'' \le \varphi_2'' < \xi_2'' < \pi, -\frac{\pi}{2} < \xi_j' < \varphi_j' \le \theta_j' < \theta_j'' \le \varphi_j'' < \xi_j'' < \frac{\pi}{2},$ $3 \le j \le n$ there exists a homeomorphism F of E^n onto itself such that F(x) = x for $||x|| \le s$ or $||x|| \ge t$ or $x \in B$ or $x = (\gamma, \theta_2, \cdots, \theta_n)$ with $\theta_j < \xi_j'$ or $\theta_j > \xi_j''$ for some j and $F(V) = \{(\gamma, \theta_2, \cdots, \theta_n): \gamma' < \gamma < \gamma'', \varphi_j' < \theta_j < \varphi_j''\}$

PROOF. This can be easily seen by the following picture.

LEMMA 5. Let $V = \{x \in E^n : 0 < \gamma_1 < ||x|| < \gamma_2\}$, and let a_1 , a_2 be any two numbers such that $0 < a_1 < a_2 < \gamma_1$. Then there is a homeomorphism F from E^n onto E^n such that F(x) = x when $||x|| \ge \gamma_2$ or $||x|| \le a_1$ and $F(V) = \{x \in E^n : a_2 < ||x|| < \gamma_2\}$.

PROOF. This is clear.

LEMMA 6. Let U be the open unit ball in E^n with center p_0 and $A \subset U$ be such that $p_0 \in Cl(\operatorname{Int}(A)) - A$. Then there exist homeomorphisms G_i , $i=1, 2, \dots$, n of E^n onto itself such that

$$\{x = (\gamma, \ \theta_2, \ \cdots, \ \theta_n) \colon 0 < \gamma < k, \ -\frac{\pi}{2} < \theta_i' < \theta_i < \theta_i'' < \frac{\pi}{2}, \ i = 3, \ 4, \ \cdots, \ n, \\ -\pi < \theta_3' < \theta_3 < \theta_3'' < \pi \}$$

 $\subset_{i=1}^m G_i(\operatorname{Int}(A))$ for some k and θ_i' , θ_i'' , $i=2, 3, \dots, n$, and $G_i(p_0)=p_0$ and G_i

is the identity in E^n-U for each i.

PROOF. By LEMMA 2, there exists a homeomorphism F_1 of E^n onto itself such that $p_0 \in Cl(R \cap F_1(Int(A)))$ where R is the ray $\{(x: x=0 \text{ or } x=(\gamma, \theta_2, \dots, \theta_n), \theta_2\}$ $=\theta_3=\cdots=\theta_n=\frac{\pi}{A}$. Let $\{p_i\}_{i=1}^{\infty}\subset F_1(\mathrm{Int}(A))\cap R$ such that $\{p_i\}_{i=1}^{\infty}$ converges to p_0 and the distances $\{d(p_i, p_0)\}_{i=1}^{\infty}$ are strictly decreasing. By LEMMA 3, for each p_i , there is a V_i of the form $V_i = \{ \{ (\gamma, \theta_2, \dots, \theta_n) : \gamma_i' < \gamma < \gamma_{i''}, \frac{\pi}{8} < \theta_{ii'} < \theta_i \} \}$ $<\theta_{ii}"<\frac{3\pi}{8}$, i=2, 3, ..., n such that $p_i \in V_j \subset \operatorname{Int}(A)$ and $\gamma_1">\gamma_1">\gamma_2">\gamma_2">\gamma_2'$ >..., j=1, 2, ... By LEMMA 4, there exists a sequence of homeomorphisms $\{f_i\}_{i=1}^{\infty}$ of E'' onto itself such that $f_i(x) = x$ when $||x|| \ge S_i$ or $||x|| \le S_{i-1}$, where $\gamma_i'' < S_i$ $\langle \gamma_{i-1}' \text{ or } x = (\gamma, \theta_2, \dots, \theta_n), \theta_i \leq -\frac{\pi}{16} \text{ or } \theta_i \geq \frac{7\pi}{8} \text{ for some } j \text{ and } f_i(V_i) = \left\{ (\gamma, \theta_1, \dots, \theta_n) \right\}$ θ_2 , ..., θ_n): $\gamma_i'' < \gamma < \gamma_i''$, $-\frac{\pi}{R} < \theta_i < \frac{3\pi}{R}$, j=2,...,n}. Define F_2 on E^n as follow: $F_2(x) = x$ when $||x|| > S_1$

$$F_2(x) = f_2(x) \text{ when } S_{i-1} \le ||x|| \le S_i$$

Then F_2 is a homeomorphism of E'' onto itself such that $F_2(F_1(\operatorname{Int}(A)))$ Pick t_i' , t_i'' for each i such that $\gamma_i' < t_i' < t_i'' < \gamma_i''$, $i=1, 2, \dots$. Then by LEMMA 5, there exists a sequence of homeomorphisms $\{g_i\}_{i=1}^{\infty}$ of E^n onto itself such that g_i is fixed when $||x|| \ge \gamma_i''$ or $||x|| \le t_{i+1}'$ and g_i maps the set $\{x: \ \gamma_{i'} < ||x|| < \gamma_{i''}\} \text{ onto } \{x: \ t_{i+1}'' < ||x|| < \gamma_{i''}\}. \text{ Let } F_3 \text{ and } F_4 \text{ be defined as } \{x: \ \gamma_{i'} < ||x|| < \gamma_{i''}\}.$ follows:

$$F_{3}(x) = f_{2i+1}(x) \text{ when } x \in \{x: \ \gamma_{2i+2} < \|x\| < \gamma_{2i+1}'' \}, \ i=0, 1, 2, \cdots,$$

$$F_{3}(x) = x \text{ otherwise,}$$

$$F_{4}(x) = f_{2i}(x) \text{ when } x \in \{x: \ \gamma_{2i+1}' < \|x\| < \gamma_{2i}'' \}, \ i=1, 2, \cdots,$$

$$F_{4}(x) = x \text{ otherwise.}$$

Then F_3 , F_4 are both homeomorphisms of E^n onto E^n and $F_3(p_0) = F_4(p_0)$ $= p_0$. Let $G_1 = F_3 F_2 F_1$ and $G_2 = F_4 F_2 F_1$. Then we have $\{x = (\gamma, \theta_2, \dots, \theta_n): 0 < \gamma\}$ $<\gamma_1'', \frac{\pi}{8} < \theta_i < \frac{3\pi}{8}, i=2, \dots, n\} \subset \bigcup_{i=1}^2 G_i(\operatorname{Int}(A)) \text{ and } G_i(p_0) = p_0, i=1, 2, \dots \text{ and } G_i$ G is the identity in $E^n - U$. By LEMMA 6, if $p_0 \in Cl(\operatorname{Int}(A)) \subset U$, and $x \notin B$,

then there exists an open cone C_x of height k < 1 and a finite family of homeomorphisms f_{x_1}, \dots, f_{x_m} of E^n onto E^n each of which is fixed outside U and p_0 such that $C_x \subset \bigcup_{i=1}^n f_{x_i}(\operatorname{Int}\ (A))$. Since we can choose another coordinate system, we can do the same thing for $x \in B$. Thus associate each x in U with norm k/2, with a cone C_x . Thus $\{C_x \colon \|x\| = k/2\}$ forms a cover for the (n-1)-sphere with center p_0 and radius k/2 and hence there exists a finite set of numbers, $\{x_1, x_2, \dots, x_l\}$ such that C_{x_l}, \dots, C_{x_l} form a cover for $\{x \colon \|x\| = k/2\}$. Since each cone has the property that $x \in C$ implies $(p_0, x) \subset C$, then C_{x_l}, \dots, C_{x_l} form a cover of $\{x \colon 0 < \|x\| \le k/2\}$. Hence there exists a finite family, $\{f_i\}_{i=1}^n$ such that $\{x \colon 0 < \|x\| \le k/2\} \subset \bigcup_{i=1}^m f_i(\operatorname{Int}(A))$. Thus we have the following lemma.

LEMMA 7. Let U be an open unit ball in E^n with center p_0 and let A be a subset of U such that $p_0 \in Cl(\operatorname{Int}(A)) - A$. Then there exists a finite family of homeomorphisms $\{f_i\}_{i=1}^m$ of E^n onto itself such that $\{x\colon 0<\|x\|<\gamma\}\subset\bigcup_{i=1}^m f_i(\operatorname{Int}(A))$ where $\gamma<1$ and f_i is fixed at p_0 and outside U for all i.

From LEMMA 7, we immediately have the desired theorem that every n-manifold is finitely complementary.

The following questions might be interesting.

- 1. Is every Hilbert space or Banach space finitely complementary?
- 2. Do S. L. H. and F. C. imply locally Euclidean?
- 3. Are zero-dimensional completely regular spaces and the universal curves finitely complementary?
 - 4. Is every homogeneous F.C. space S.L.H?

Kansas State University and University of Florida

Yu-Lee Lee

BIBLIOGRAPHY

- [1] L.R. Ford, Jr., Homeomorphism groups and coset spaces, Trans, Amer. Math. Soc., Vol. 77(1954) pp. 490-497.
- [2] G.M. Fisher, On the group of all homeomorphisms of a manifold, Trans. Amer. Math. Soc., vol. 97(1960) pp. 193-212.
- [3] J.V. Whittaker, On isomorphic groups and homeomorphic spaces, Ann. of Math., vol. 78(1963) pp. 74—91.
- [4] Y.L. Lee, Characterizing the topology by the class of homeomorphisms. To appear