HOMEOMORPHISMS ON MANIFOLDS

By Yu-Lee Lee

Let $H(X)$ be the class of all homeomorphisms of a topological space X onto itself. If X is an n-manifold, then X is a strong local homogeneous (S.L.H.), i. e., for every neighborhood of any point x, there exists a subneighborhood $U(x)$ such that for any $z \in U(x)$ there exists g in $H(X)$ with $g(x)=z$ and with g equal to the identity on the complement of $U(x)$. However there exist S.I.H. spaces which are not n-manifolds, for example, the zero-dimensional completely regular spaces [1], the universal curve [2] and the normed linear spaces [1,3]. Therefore being a S. L.H. space does not characterize an n-manifold. Since S.L.H. is defined by the existence of one homeomorphism and moving one point onto another within a small open set, we intend to formulate a similar concept, the existence of a finite family of homeomorphisms which are the identity map outside a small open set and move a set to satisfy certain relations. A topological space X is called finitely complementary (F.C.) if for every neighborhood U of any point x and any opsn set V such that $x \in \operatorname{Bndry}(V)$ there exists a finite subfamily $\left\{f_{1}, \cdots, f_{n}\right\}$ of $H(X)$ such that $\cup\left\{f_{i}(V): i=1,2 \cdots, n\right\} \cup\{x\}$ is an open set and each f_{i} is the identity map at x and outside U. The purpose of this paper is to prove that every finite-dimensional manifold is L.F.C. This proposition is very useful in studying $H(X)$ [4]. Also we raise many interesting questions about L.F.C.
Lemma 1. A normed linear space is S.L.H.
Proof. See [1] or [3].
Lemma 2. Let U be a unit open ball with center 0 in Euclidean n-space E^{n} and V be an open set such that $0 \in \operatorname{Bndry}(V)$. Let L be a line segment with 0 as one end-point. Then there exists $f \in H\left(E^{n}\right)$ such that F is the identity at 0 and outside U and $0 \in U(L \cap f(V))$.

Proof. Since $0 \in \operatorname{Bndry}(V)$, there exists a sequence of points $\left\{p_{i}\right\}_{i=1}^{\infty}$ in V such that $\left\{p_{i}\right\}_{i=1}^{\infty}$ converges to 0 . Without loss of generality we may assume that the distances $d\left(0, p_{i}\right)$ are strictly decreasing and $p_{1} \in L$. Let q_{2} be the point in L such that $d\left(q_{2}, 0\right)=d\left(p_{2}, 0\right)$. Then there is an arc [$\left.q_{2}, p_{2}\right]$ in the sphere with center 0 and radius $d\left(q_{2}, 0\right)$. Associate with each point q in $\left[q_{2}, p_{2}\right]$ an open ball B_{q} such that $C l\left(B_{q}\right) \cap \cup\left\{p_{i}: i \neq 2\right\}=\phi$. Since $\left[q_{2}, p_{2}\right]$ is compact, there cxists
a subcover $\left\{B_{1}, \cdots, B_{m}\right\}$ such that $p_{2} \in B_{1}, q_{2} \in B_{n}$ and $B_{i} \cap B_{i+1} \neq \phi, i=1,2, \cdots$, $m-1$. Lat $x_{i} \in B_{i} \cap B_{i+1}$ for each $i=1,2, \cdots, m-1$. By LEMMA 1 , there exists $f_{i} \in H\left(E^{n}\right), i=1,2, \cdots, m$ such that f_{i} is the identity at 0 and outside B_{i} and $f_{1}\left(p_{2}\right)=x_{1}, f_{k}\left(x_{k-1}\right)=x_{k}$ for $2 \leq k \leq m-1$ and $f_{m}\left(x_{m-1}\right)=q_{2}$. Let $F_{2}=f_{m} \cdot f_{m-1} \cdots$ $f_{2} \cdot f_{1}$. Then F_{2} is the identity at 0 and outside $\bigcup_{i=1}^{m} B_{i}=V_{2}$ and $F_{2}\left(p_{2}\right)=q_{2}$. Similarly we pick $q_{i} \in L$ and open sets V_{i} such that $V_{i} \cap V_{j}=\phi$ for $i \neq j$, and F_{i} $\epsilon H\left(E^{n}\right)$ such that F_{i} is the identity at 0 and outside V_{i} and $F_{i}\left(p_{i}\right)=q_{i}$. Let F be the identity on $E^{n}, ~ \bigcup_{i=2}^{\infty} V_{i}$ and $F=F_{i}$ on $V_{i}, i=2,3, \ldots$. It is now clear that $F \in H\left(E^{n}\right), \quad F\left(p_{i}\right)=q_{i}$. each q_{i} lies on L and $0 \epsilon C l(L \cap f(V))$.

Let $p=\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right)$ be any point different from 0 in E^{n} where $\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right)$ is defined as follows:

$$
\begin{aligned}
& r=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} \\
& \sin \theta_{j}=-\frac{x_{j}}{\sqrt{x_{1}^{2}+\cdots+x_{j}^{2}}}, \quad 3 \leq j \leq n \text { and }-\frac{\pi}{2}<\theta_{j}<\frac{\pi}{2} \\
& \cos \theta_{2}=\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \sin \theta_{2}=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \quad-\pi<\theta<\pi .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& x_{1}=\gamma \cos \theta_{n} \cdots \cos \theta_{3} \cos \theta_{2} \\
& x_{2}=r \cos \theta_{n} \cdots \cos \theta_{4} \cos \theta_{3} \sin \theta_{2}, \\
& x_{3}=r \cos \theta_{n} \cos \theta_{n-1} \cdots \cos \theta_{4} \sin \theta_{3}, \\
& \cdots \cdots \cdots \cdots \\
& x_{n-1}=\gamma \cos \theta_{n} \sin \theta_{n-1}, \\
& x_{n}=r \sin \theta_{n} .
\end{aligned}
$$

This defines a homeomorphism from the product space $(0, \infty) \times(-\pi, \pi) \times\left(-\frac{\pi}{2}\right.$, $\left.\frac{\pi}{2}\right)^{n-2}$ onto $E^{n} \backslash B$ where $B=\left\{\left(x_{1}, \cdots, x_{n}\right) \in E^{n} \mid\right.$ there exists an $i \leq n$ such that $x_{j}=0$ for all $\left.j \leq i\right\}$. Thus we have the following lemma.

LEMMA 3. The family of all sets of the form $V\left(\gamma^{\prime}, \gamma^{\prime \prime} ; \theta_{i}^{\prime}, \theta_{i}^{\prime \prime} ; i=2,3, \cdots, n\right)$ $=\left\{\left(\gamma ; \theta_{2}, \cdots, \theta_{n}\right): \gamma_{1}<\gamma<\gamma_{2}, \theta_{i}^{\prime}<\theta_{i}<\theta_{i}^{\prime \prime}, i=2, \cdots, n\right\}$ where $-\pi<\theta_{2}^{\prime}<\theta_{2}^{\prime \prime}<\pi,-\frac{\pi}{2}$ $<\theta_{i}^{\prime}<\theta_{i}^{\prime \prime}<\frac{\pi}{2}, i=3,4, \cdots, n$ form a basis for $E^{n} \backslash B$ with the relative topology.

LEMMA 4. For each $V\left(\gamma^{\prime}, \gamma^{\prime \prime}: \theta_{i}^{\prime}, \theta_{i}^{\prime \prime} ; i=2,3, \cdots, n\right)$ and $0<s<\gamma^{\prime}<\gamma^{\prime \prime}<t,-\pi$ $<\xi_{2}^{\prime}<\varphi_{2}{ }^{\prime} \leq \theta_{2}{ }^{\prime}<\theta_{2}^{\prime \prime} \leq \varphi_{2}^{\prime \prime}<\xi_{2}^{\prime \prime}<\pi,-\frac{\pi}{2}<\xi_{j}^{\prime}<\varphi_{j}^{\prime} \leq \theta_{j}^{\prime}<\theta_{j}^{\prime \prime} \leq \varphi_{j}^{\prime \prime}<\xi_{j}^{\prime \prime}<\frac{\pi}{2}$, $3 \leq j \leq n$ there exists a homeomorphism F of E^{n} onto itself such that $F(x)=x$ for $\|x\| \leq s$ or $\|x\| \geq t$ or $x \in B$ or $x=\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right)$ with $\theta_{j}<\xi_{j}^{\prime}$ or $\theta_{j}>\xi_{j}^{\prime \prime}$ for some j and $F(V)=\left\{\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right): \gamma^{\prime}<\gamma<\gamma^{\prime \prime}, \varphi_{j}^{\prime}<\theta_{j}<\varphi_{j}^{\prime \prime}\right\}$

PROOF. This can be easily seen by the following picture.

LEMMA 5. Let $V=\left\{x \in E^{n}: 0<r_{1}<\|x\|<r_{2}\right\}$, and let a_{1}, a_{2} be any two numbers such that $0<a_{1}<a_{2}<\gamma_{1}$. Then there is a homeomorphism F from E^{n}. onto E^{n} such that $F(x)=x$ when $\|x\| \geq \gamma_{2}$ or $\|x\| \leq a_{1}$ and $F(V)=\left\{x \in E^{n}: a_{2}<\|x\|<\gamma_{2}\right\}$.

PROOF. This is clear.
Lemma 6. Let U be the open unit ball in E^{n} with center p_{0} and $A \subset U$ be suck that $p_{0} \in C l(\operatorname{Int}(A))-A$. Then there exist homeomorphisms $G_{i}, i=1,2, \cdots, n$ of E^{n} onto itself such that

$$
\begin{gathered}
\left\{x=\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right): 0<\gamma<k,-\frac{\pi}{2}<\theta_{i}^{\prime}<\theta_{i}<\theta_{i}^{\prime \prime}<\frac{\pi}{2}, i=3,4, \cdots, n,\right. \\
\left.-\pi<\theta_{3}^{\prime}<\theta_{3}<\theta_{3}^{\prime \prime}<\pi\right\}
\end{gathered}
$$

$\subset \bigcup_{i=1}^{m} G_{i}(\operatorname{Int}(A))$ for some k and $\theta_{i}^{\prime}, \theta_{i}^{\prime \prime}, i=2,3, \cdots, n$, and $G_{i}\left(p_{0}\right)=p_{0}$ and G_{i}
is the identity in $E^{n}-U$ for each i.
PROOF. By LEMMA 2, there exists a homeomorphism F_{1} of E^{n} onto itself such that $p_{0} \in C l\left(R \cap F_{1}(\operatorname{Int}(A))\right)$ where R is the ray $\left\{\left(x: x=0\right.\right.$ or $x=\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right), \theta_{2}$ $\left.=\theta_{3}=\cdots=\theta_{n}=\frac{\pi}{4}\right\}$. Let $\left\{p_{i}\right\}_{i=1}^{\infty} \subset F_{1}(\operatorname{Int}(A)) \cap R$ such that $\left\{p_{i}\right\}_{i=1}^{\infty}$ converges to p_{0} and the distances $\left\{d\left(p_{i}, p_{0}\right)\right\}_{i=1}^{\infty}$ are strictly decreasing. By LEMMA 3, for each p_{j}, there is a V_{j} of the form $V_{j}=\left\{\left\{\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right): \gamma_{j}^{\prime}<\gamma<\gamma_{j}{ }^{\prime \prime}, \frac{\pi}{8}<\theta_{j i}^{\prime}<\theta_{i}\right.\right.$ $\left.<\theta_{j i}{ }^{\prime \prime}<\frac{3 \pi}{8}, i=2,3, \cdots, n\right\}$ such that $p_{j} \in V_{j} \subset \operatorname{lnt}(A)$ and $\gamma_{1}{ }^{\prime \prime}>\gamma_{1}{ }^{\prime}>\gamma_{2}{ }^{\prime \prime}>\gamma_{2}{ }^{\prime}$ $>\cdots, j=1,2, \cdots$. By LEMMA 4, there exists a sequence of homeomorphisms $\left\{f_{i}\right\}_{i=1}^{\infty}$ of E^{n} onto itself such that $f_{i}(x)=x$ when $\|x\| \geq S_{i}$ or $\|x\| \leq S_{i-1}$ where $\gamma_{i}^{\prime \prime}<S_{i}$ $\left\langle\gamma_{i-1}^{\prime}\right.$ or $x=\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right), \theta_{j} \leq-\frac{\pi}{16}$ or $\theta_{j} \geq \frac{7 \pi}{8}$ for some j and $f_{i}\left(V_{i}\right)=\{(\gamma$, $\left.\left.\theta_{2}, \cdots, \theta_{n}\right): \gamma_{i}^{\prime \prime}<\gamma<\gamma_{i}^{\prime \prime},-\frac{\pi}{8}<\theta_{j}<\frac{3 \pi}{8}, j=2, \cdots, n\right\}$. Define F_{2} on E^{n} as follow: $F_{2}(x)=x$ when $\|x\|>S_{1}$ $F_{2}(x)=f_{2}(x)$ when $S_{i-1} \leq\|x\| \leq S_{i}$.
Then F_{2} is a homeomorphism of E^{n} onto itself such that $F_{2}\left(F_{1}(\operatorname{lnt}(A))\right)$ $\supset\left\{\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right): r_{j^{\prime}}<\gamma<\gamma_{j}^{\prime \prime}\right.$ for some j and $\left.\frac{\pi}{8}<\theta_{i}<\frac{3 \pi}{8}\right\}$, and $F_{2}\left(p_{0}\right)=p_{0}$. Pick $t_{i}^{\prime}, t_{i}^{\prime \prime}$ for each i such that $\gamma_{i}^{\prime}<t_{i}^{\prime}<t_{i}^{\prime \prime}<\gamma_{i}^{\prime \prime}, i=1,2, \cdots \cdots$. Then by LEMMA 5, there exists a sequence of homeomorphisms $\left\{g_{i}\right\}_{i=1}^{\infty}$ of E^{n} onto itself such that g_{i} is fixed when $\|x\| \geq r_{i}^{\prime \prime}$ or $\|x\| \leq t_{i+1}^{\prime}$ and g_{i} maps the set $\left\{x: r_{i}{ }^{\prime}<\|x\|<\gamma_{i}{ }^{\prime \prime}\right\}$ onto $\left\{x: t_{i+1}{ }^{\prime \prime}<\|x\|<\gamma_{i}{ }^{\prime \prime}\right\}$. Let F_{3} and F_{4} be defined as follows:

$$
\begin{aligned}
& F_{3}(x)=f_{2 i+1}(x) \text { when } x \in\left\{x: \gamma_{2 i+2}<\|x\|<\gamma_{2 i+1}{ }^{\prime \prime}\right\}, i=0,1,2, \cdots, \\
& F_{3}(x)=x \text { otherwise, } \\
& F_{4}(x)=f_{2 i}(x) \text { when } x \in\left\{x: \gamma_{2 i+1}{ }^{\prime}<\|x\|<\gamma_{2 i}^{\prime \prime}\right\}, i=1,2, \cdots, \\
& F_{4}(x)=x \text { otherwise. }
\end{aligned}
$$

Then F_{3}, F_{4} are both homeomorphisms of E^{n} onto E^{n} and $F_{3}\left(p_{0}\right)=F_{4}\left(p_{0}\right)$ $=p_{0}$. Let $G_{1}=F_{3} F_{2} F_{1}$ and $G_{2}=F_{4} F_{2} F_{1}$. Then we have $\left\{x=\left(\gamma, \theta_{2}, \cdots, \theta_{n}\right): 0<\gamma\right.$ $\left\langle\gamma_{1}{ }^{\prime \prime}, \frac{\pi}{8}\left\langle\theta_{i}<\frac{3 \pi}{8}, i=2, \cdots, n\right\} \subset \bigcup_{i=1}^{2} G_{i}(\operatorname{lnt}(A))\right.$ and $G_{i}\left(p_{0}\right)=p_{0}, i=1,2, \cdots$ and G_{i} is the identity in $E^{n}-U$. By Lemma 6 , if $p_{0} \in C l(\operatorname{lnt}(A)) \subset U$, and $x \notin B$,
then there exists an open cone C_{x} of height $k<1$ and a finite family of homeo morphisms $f_{x_{1}}, \cdots, f_{x_{m}}$ of E^{n} onto E^{n} each of which is fixcd outside U and p_{0} such that $C_{x} \subset \cup_{i=1}^{n} f_{x_{i}}(\operatorname{Int}(A))$. Since we can choose another coordinate system, we can do the same thing for $x \in B$. Thus associate each x in U with norm $k / 2$, with a cone C_{x}. Thus $\left\{C_{x}:\|x\|=k / 2\right\}$ forms a cover for the (n - 1)-sphere with center p_{0} and radius $k / 2$ and hence there exists a finite set of numbers, $\left\{x_{1}, x_{2}, \cdots, x_{l}\right\}$ such that $C_{x_{i}}, \cdots, C_{x_{l}}$ form a cover for $\{x:\|x\|=k / 2\}$. Since each cone has the property that $x \in C$ implies $\left(p_{0}, x\right) \subset C$, then $C_{x_{1}}, \cdots, C_{x_{l}}$ form a cover of $\{x: 0<\|x\| \leq k / 2\}$. Hence there exists a finite family, $\left\{f_{i}\right\}_{i=1}^{n}$ such that $\{x: \quad 0<\|x\| \leq k / 2\} \subset \bigcup_{i=1}^{m} f_{i}(\operatorname{lnt}(A))$. Thus we have the following lemma.

LEMMA 7. Let U be an open unit ball in E^{n} with center p_{0} and let A be a subset of U such that $p_{0} \in C l(\operatorname{Int}(A))-A$. Then there exists a finite family of homeomorphisms $\left\{f_{i}\right\} i=1$ of E^{n} onto itself such that $\{x: 0<\|x\|<\gamma\} \subset \bigcup_{i=1}^{m} f_{i}$ (Int (A)) where $\gamma<1$ and f_{i} is fixed at p_{0} and outside U for all i.

From Lemma 7, we immediately have the desired theorem that every n-manifold is finitcly complementary.

The following questions might be interesting.

1. Is every Hilbert space or Banach space finitely complementary?
2. Do S. L. H. and F.C. imply locally Euclidean?
3. Are zero-dimensional completely regular spaces and the universal curves finitcly complementary?
4. Is every homogeneous F.C. space S.L.H ?

BIBLIOGRAPHY

[1] L. R. Ford, Jr., Homeomorphism groups and coset spaces, Trans, Amer. Math. Soc., Vol. 77(1954) pp. 490-497.
[2] G. M. Fisher, On the group of all homeomorphisms of a manifcld, Trans. Amer. Math. Soc., vol. 97(1960) pp. 193-212.
[3] J. V. Whittaker, On isomorphic groups and homeomorphic spaces, Ann. of Math., vol. 78(1963) pp. 74-91.
[4] Y.L. Lee, Characterizing the topology by the class of homeomorphisms. To appear

