ON PSEUDO MANIFOLD WITH ($f r, g$)-STRUCTURE.

By Yongbai Baik

Yano [4] introduced the concept of f-structure satisfying $f^{3}+f=0$ on an n-dimensional differentiable manifold, and the author inverstigated integrability conditions from the global view point.
The f-structure may be regarded as a generalization of the almost complex structure and almost contact structure. Later on Kodo [1] has defined a normal ($f r, g$)-structure and inverstigated such an infinitestimal transformation v^{h} of a differentiable manifold with f-structure as leaves the structure tensor f_{j}^{i} invariant.
In the preset paper, we shall define a pseudo-manifold with ($f r, g$) structure and prove some identities valid in this manifold.
Furthmore, we define a f_{j}^{i}-inve riant vector which is a generalization of a analytic vector in almost complex spaces, and deduce some theorems in pseudo manifold with ($f r, g$)-structure.

§ 1. Indroduction.

We consider an n -dimensional differentiable manifold of class C^{∞} covered by a system of coordinate neighborhood $\left\{x^{h}\right\}$, and a tensor field f_{i}^{h} of type (1,1) and of class C^{∞} satisfying

$$
\begin{equation*}
f_{i}^{t} f_{t}^{s} f_{s}^{h}+f_{i}^{h}=0 \tag{1.1}
\end{equation*}
$$

$$
(i, h, s, t, \cdots \cdots=1,2, \cdots \cdots, n)
$$

For a tensor f_{i}^{h} satisfying (1.1) the operators
(1. 2) $\quad l_{i}^{h}=-f_{i}^{t} f_{t}^{h} \quad$ and $\quad m_{i}^{h}=-l_{i}^{h}+\delta_{i}^{h}$
applied to the tangent space at a point of the manifold are complementary projection operators. Thus if there is given a tensor f_{i}^{h} satisfying (1.1), there exist complementary distributions L and M corresponding to the projection operators l_{i}^{h} and m_{i}^{h} respectively. If the rank of f is r, then we call such a structure an fstructure of rank $r(r \leqq n)$, in this case the dimensions of L and M are r and $n-r$ respectively.

For f_{i}^{h} satisfying (1.1) and l_{i}^{h}, m_{i}^{h} defined by (1.2), we have
(1. 3)

$$
\begin{cases}l_{i}^{t} f_{t}^{h}=f_{i} l_{.}^{h}=f_{i}^{h}, & l_{i}^{t} l_{t}^{h}=l_{i}^{h} \\ m_{i}^{t} m_{t}^{h}=m_{i}^{h}, & f_{i}^{t} m_{t}^{h}=l_{i}^{l} m_{t}^{h}=0\end{cases}
$$

If the rank of f is n, then $l_{i}^{h}=\delta_{i}^{h}$ and $m_{i}^{h}=0$, so that, we find that the f structure of rank n is an almost complex structure. And if the rank of f is $n-1$, then the distribution M is one dimensional and m_{j}^{i} should have the form:

$$
\begin{equation*}
m_{j}^{i}=f^{i} f_{j} . \tag{1.4}
\end{equation*}
$$

where f^{i} and f_{j} are contravariant and covariant vector respectively. From the relations (1.2) we have

$$
\begin{equation*}
f_{j}^{t} f_{t}^{i}=-f_{j}^{i}+f^{i} f_{j} \tag{1.5}
\end{equation*}
$$

Therefore, we find that the f-structure of rank $n-1$ is an almost contact. structure defined by Sasaki [4].

It is well known [6] that a manifold with f-structure of rank r always admits a positive definite Riemannian metric tensor $g_{j i}$ such that
(1. 6)

$$
f_{j}^{\dagger} f_{i}^{s} g_{t s}=g_{j i}-m_{j i}
$$

$$
\text { where } \quad m_{j i}=m_{j}^{t} g_{t i}
$$

from which we see that the tensor $m_{j i}$ is a symmetric one.
If an f-structure of rank r admits a positive definite Riemannian metric defined by (1.6), then we shall call the structure an $\left(f_{r}, g\right)$-structure.

Next, operating ∇_{j} to (1.1), we find

$$
\begin{equation*}
f_{t}^{s} f_{s}^{h} \nabla_{j} f_{i}^{t}+f_{i}^{t} f_{s}^{h} \nabla_{j} f_{t}^{s}+f_{i}^{t} f_{t}^{s} \nabla_{j} f_{s}^{h}+\nabla_{j} f_{i}^{h}=0, \tag{1.7}
\end{equation*}
$$

where ∇_{j} denotes the operator of covariant derivative with respect to the Riemannian connection formed with $g_{j i}$, and tensor $f_{j i}=f_{j}^{t} g_{i i}$ is a skew-symmetric one [1].

Applying ∇_{h} to (1.6), we have

$$
\begin{equation*}
\nabla_{h} m_{j i}+f_{j t} \nabla_{h} f_{i}^{t}+f_{i t} \nabla_{h} f_{j}^{t}=0 \tag{1.8}
\end{equation*}
$$

From (1.3) and (1.7), we find [2]
(1. 9) $\quad f_{i}^{t} l_{h}^{s} \nabla_{j} f_{t s}=l_{i}^{t} f_{h}^{s} \nabla_{j} f_{t s}$.

By virtue of (1.2) and (1.8), we have

$$
\begin{equation*}
m_{t}^{j} m_{s}^{i} \nabla_{h} m_{i i}=0 \tag{1.10}
\end{equation*}
$$

§ 2. Pseudo-manifold with ($f r, g$)-structure.
In a manifold with $\left(f_{r}, g\right)$-structure, if its structure tensor f_{i}^{h} satisfies

$$
\begin{equation*}
N_{j i}^{h} \equiv f_{j}^{l} \nabla_{l} f_{i}^{h}-f_{i}^{l} \nabla_{l} f_{j}^{h}-\left(\nabla_{j} f_{i}^{l}-\nabla_{i} f_{j}^{l}\right) f_{l}^{h}=0 \tag{2.1}
\end{equation*}
$$

and
(2. 2) $\quad F_{j i h} \equiv \nabla_{j} f_{i n}+\nabla_{i} f_{h j}+\nabla_{h} f_{j i}=0$,
(2. 3) $\quad M_{j i h} \equiv \nabla_{j} m_{i h}+\nabla_{i} m_{h j}+\nabla_{h} m_{j i}=0$,
where $N_{j i}^{h}$ is the Nijenhuis tensor for the structure tensor f_{i}^{h} defined by Yano[4], then we shall call the manifold a pseudo-manifold with (f_{r}, g)-structure.
Transvecting (2.1) with m_{h}^{k}, we have

$$
f_{j}^{l} f_{i}^{h}\left(\nabla_{l} m_{h}^{k}-\nabla_{h} m_{l}^{k}\right)=0,
$$

which is equivalent to
(2. 4) $\quad l_{j}^{l} l_{i}^{h}\left(\nabla_{l} m_{h}^{k}-\nabla_{h} m l^{k}\right)=0$.

Thus, if the Nijenhuis tensor vanishes, then the distribution L is integrable[4].
Next, the Nijenhuis tensor can be written as

$$
N_{j i h} \equiv N_{j i}^{k} g_{k h}=f_{j}^{l} F_{l i h}-f_{i}^{l} F_{l j h}+\nabla_{i} m_{h j}-\nabla_{j} m_{i h}-\nabla_{h} m_{j i}-2 f_{i}^{l} \nabla_{h} f_{j l} .
$$

Using of (2.1) and (2.2), we get

$$
\begin{equation*}
\nabla_{i} m_{h j}-\nabla_{j} m_{i h}-\nabla_{h} m_{j i}=2 f_{i}^{l} \nabla_{h} f_{j l} \tag{2.5}
\end{equation*}
$$

Transvection (2.5) with $m_{t}^{j} m_{s}^{j}$ by virtue of (1.10) we have

$$
\begin{equation*}
m_{t}^{j} m_{s}^{i}\left(\nabla_{i} m_{j}^{h}-\nabla_{j} m_{i}^{h}\right)=0 \tag{2.6}
\end{equation*}
$$

This equation shows that the distribution M is integrable [1]. Thus we haveTHEOREM 1. In a pseudo-manifold with (f_{r}, g)-structure, the distributions L. and M are integrable.

From (2.3) and (2.5), we get
(2. 7)

$$
\nabla_{i} m_{h j}=f_{i}^{l} \nabla_{h} f_{j r}
$$

Since the tensor $m_{h j}$ is symmetric in h and j, we find
(2. 8) $\quad f_{i}^{l} \nabla_{h} f_{j l}-f_{i}^{l} \nabla_{j} f_{h l}=$.
taking account of $(2,2)$, we get
(2. 9) $\quad f_{i}^{l} \nabla_{l} f_{j h}=0$,
which is equivalent to

$$
\begin{equation*}
l_{i}^{l} \nabla_{l} f_{j h}=0 \tag{2.10}
\end{equation*}
$$

Transvecting (2.9) with f_{k}^{h}, using of (2. 7) we get

$$
f_{i}^{l} \nabla_{k} m_{l j}=0
$$

from which taking account of (1.3), we have

$$
\begin{equation*}
m_{j}^{l} \nabla_{k} f_{i l}=0 \tag{2.11}
\end{equation*}
$$

From (2.2), we find

$$
m_{j}^{l} \nabla_{l} f_{i k}=0
$$

which is equivatent to

$$
\begin{equation*}
m_{i}^{l} \nabla_{l} f_{j h}=0 \tag{2.12}
\end{equation*}
$$

From (2.10) and (2.12), we have

$$
\begin{equation*}
\nabla_{i} f_{j h}=0 \tag{2.13}
\end{equation*}
$$

Conversely, if, in a manifold with ($f r, g$)-structure, (2.13) holds good, then we get $N_{i, i}=0, F_{j i h}=0$ and $M_{j i h}=0$, which shows that the manifold is a pseudo-manifold. Thus we have

THEOREM 2. A necessary and sufficient condition the manifold with ($f r, g$)structure is pseudo-manifold is that (2.13) holds good.

In a manifold wi.h $(f r, g)$-structure, if affine connection $\Gamma_{j k}^{i}$ satisfies
(2.14) $\nabla_{i} f_{j k}=\partial_{i} f_{j k}-f_{a k} \Gamma_{i j}^{a}-f_{j a} \Gamma_{i k}^{a}=0$,
then we shall call the affine symmetic connection $\Gamma_{j k}^{i}$ is an f-connection defined by Yano.

Thus we have
THEOREM 3. In a pseudo-manifold with ($f r, g$)-structure, an affine symmetric connection $\Gamma_{j k}^{i}$ is an f-connection.

§ 3, Curvatures.

In this section, we shall assume we are in a pseudo-manifold with ($f r, g$)structure.

Let $K_{h j i}{ }^{l}$ be the Ricmannian curvature tensor, and we put
(3. 1)

$$
K_{j i}=K_{l j i}{ }^{l}, \quad K=g^{j i} K_{j i}, \quad K_{h j i l}=K_{h j i}^{m} g_{m l}
$$

(3. 2)

$$
H_{j i}=f^{l h} K_{h j i l}, \quad H=-f^{j i} H_{j i}
$$

Applying the Ricci formulae to f_{i}^{h}, we have the following identities which are valid in a pseudo-manifold
(3. 3)

$$
\nabla_{k} \nabla_{j} f_{i}^{h}-\nabla_{j} \nabla_{k} f_{i}^{h}=K_{k j l}{ }^{h} f_{i}^{l}-K_{k j i}^{l} f_{l}^{h} .
$$

Taking account of (2.13), we get

$$
\text { (3. 4) } \quad K_{k j l}{ }^{h} f_{i}^{l}-K_{k j i}^{l} f_{l}^{h}=0 \text {. }
$$

Trarsjecting (3.4) with $g^{j i}$, we get

$$
K_{k}^{l} f_{l}^{h}=K_{k j l}{ }^{h} f^{j l}=\frac{1}{2}\left(K_{k j l}{ }^{h}-K_{k l j}^{h}\right) f^{j l},
$$

from which we have
(3. 5)

$$
K_{k}^{l} f_{l h}=-\frac{1}{2} K_{j l k h} f^{j l} .
$$

From (3.2), we get

$$
\text { (3. 6) } \quad K_{k}^{l} f_{l h}=-H_{k h .}
$$

Since the tensor $H_{k h}$ is a skew symmetric in k and h, we get
(3. 7) $\quad K_{k}^{l} f_{l}^{h}=K_{l}^{h} f_{k}^{l}$.

Transvecting (3.6) with $f^{k h}$, we have

$$
\begin{equation*}
K-H=m^{k h} K_{k h .} \tag{3.8}
\end{equation*}
$$

Next, we consider a pseudo-manifold of positive constant curvature, in this case the Riemannian curvature tensor takes the form;
(3. 9) $\quad K_{h j i l}=\frac{K}{n(n-1)}\left(g_{h l g j i}-g_{j l} g_{h i}\right)$.

Transvecting (3.7) with $g^{\text {lh }}$, we get

$$
\begin{equation*}
K_{j i}=\frac{K}{n} g_{j i} \tag{3.10}
\end{equation*}
$$

from which we have

$$
\mathfrak{m}^{\dot{j} K_{j i}^{f}}=\frac{1}{n} m_{a}^{a} K .
$$

Taking a ccount of (3.8), we have
(3.11) $\quad K-H=\frac{1}{n} m_{a}^{a} K$.

Transvecting (3.9) with $f^{h l} f^{j i}$ and using of $f^{h l} f^{j i} g_{h l} g_{j i}=0$, we have

$$
\begin{equation*}
H=\frac{K}{n(n-1)} l_{a}^{a} . \tag{3.12}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
K-H=K\left(1-\frac{l_{a}^{a}}{n(n-1)}\right), \tag{3.13}
\end{equation*}
$$

From (3.10) and (3.12), we have

$$
\begin{equation*}
\frac{n-2}{n-1} K\left(1-\frac{m_{a}^{a}}{n}\right)=0 \tag{3.14}
\end{equation*}
$$

Since the relation $m_{a}^{a} \neq n$, we have $K=0,(n>2)$. Thus we have
THEOREM 4. In a pseudo-manifold with ($f r, g$)-structure, there does not exist a manifold of non-zero constant curvature.

§4. \boldsymbol{f}_{j}^{i}-invariant.

In this section, we shall consider in a pseudo-manifold with ($f r, g$)-structure a vector field v^{h} satisfying

$$
\text { (4. 1) } \quad £_{\ell} f_{j}^{i} \equiv-f_{j}^{l} \nabla_{l} v^{i}+f_{l}^{i} \nabla_{j} v^{l}=0 \text {, }
$$

where $£_{v}$ denotes the Lie derivative with respect to an infinitesimal transformation v^{h}, then we shall call the vector field v^{h} is f_{j}^{i}-invariant. From (1. 2), we easily get

$$
\text { (4. 2) } \quad £_{v} m_{j}^{\prime}=0 \text {. }
$$

And the following identities are well known:
(4. 3)

$$
\left.£_{\nu} \nabla_{h} f_{j}^{i}-\nabla_{h} £_{\nu} f_{j}^{i}=f_{j}^{l} £_{\nu}\left\{\begin{array}{l}
i \\
i
\end{array}\right\}-f_{l}^{i} \dot{£}_{v}\{ \}_{b_{j}}^{l}\right\}_{0}
$$

(4. 4)

$$
£_{\nu}\left\{\begin{array}{l}
i \\
h j
\end{array}\right\}=\frac{1}{2} g^{i l}\left[\nabla_{h^{2}} £_{\nu} g_{l j}+\nabla_{j} £_{\nu} g_{h l}-\nabla_{l} £_{v} g_{h j}\right]
$$

In this manifold, by virtue of (2.13), we have

$$
f_{j}^{l} £_{v}\left\{_{h l}^{i}\right\}-f_{l}^{i} £_{v}\left\{\left\{_{h j}^{l}\right\}=0 .\right.
$$

Contracting for i and h, we get

$$
f_{j}^{l} £_{v}\left\{{ }_{t l}^{t}\right\}-f_{l}^{t} £_{v}\left\{\begin{array}{l}
l j \tag{4.5}\\
l
\end{array}\right\}=0 .
$$

On the other hand, from (4.2) we have
(4. 6)

$$
m_{j}^{l} £_{v}\left\{{ }_{t l}^{t}\right\}-m_{l}^{t} £_{v}\left\{{ }_{t j}^{l}\right\}=0
$$

Substituting (4.4) in (4.5) and (4.6) respectively, we obtain

$$
\begin{equation*}
\frac{1}{2} f_{j}^{l} g^{t s}\left(\nabla_{l} £_{v} g_{t s}\right)+f^{l t}\left(\nabla_{l} £_{v} g_{t j}\right)=0 \tag{4.7}
\end{equation*}
$$

(4. 8)

$$
m_{j}^{l} g^{t s}\left(\nabla_{l} £_{v} g_{t^{s}}\right)-m^{t s}\left(\nabla_{j} £_{v} g_{t s}\right)=0
$$

In an n-dimensional Riemannian space, if a vector fied v^{h} satisfies each of the following conditions;
(4. 9$)$

$$
£_{v} g_{j i} \equiv \nabla_{j} v_{i}+\nabla_{i} v_{j}=0,
$$

$$
\begin{equation*}
£_{v} g_{j i} \equiv \nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \phi g_{j i} \tag{4.10}
\end{equation*}
$$

$$
£_{v}\left\{\begin{array}{l}
h i \tag{4.11}
\end{array}\right\} \equiv \nabla_{j} \nabla_{i} v^{h}+K_{j i}^{k} v^{l}=\delta_{j}^{h} \Psi_{i}+\delta_{i}^{h} \Psi_{j}
$$

then it is called a Killing vector, a conformal Killing vector and a projective Killing vector, respectively, where

$$
\phi=\frac{1}{n} \nabla_{l} v^{l}, \quad \Psi_{i}=\frac{1}{n+1} \nabla_{i} \nabla_{l} v^{l} .
$$

If a conformal Killing vector v^{h} is at the same time f_{j}^{i}-invariant, then substituting (4.10) in (4.7) and (4.8) respectively, we find
(4.12) $\quad f_{j}^{l} \phi_{l}=0$,
and

$$
\begin{equation*}
n m_{j}^{l} \phi_{l}-m_{l}^{l} \phi_{j}=0 . \quad(n>2) \tag{4.13}
\end{equation*}
$$

(4.12) is equivalent to

$$
\begin{equation*}
l_{j}^{l} \phi_{l}=0 . \tag{4.14}
\end{equation*}
$$

From (4.12) and (4.13) and by virtue of (1.2), we have

$$
\left(1-\frac{1}{n} m_{l}^{\prime}\right) \phi_{j}=0
$$

from which we have

$$
\begin{equation*}
\phi_{j}=0, \tag{4.15}
\end{equation*}
$$

which is equivalent to
(4.16) $\quad \nabla_{j} \nabla_{l} v^{l}=0$.

As the manifold is compact, using the Green's theorem, we deduce
(4.17) $\quad \nabla_{l} v^{l}=0$.

Thus we have
THEOREM 5. In a compact pseudo-manifold with (fr, g)-structure, a conformal Killing vector v^{h} which admits f_{j}^{i}-invariant is a Killing vector.

For a projective Killing vector v^{h} which is at the same time f_{j}^{i}-invariant, substituting (4.11) in (4.5) and (4.6) respectively, we get $\nabla_{i} \nabla_{l} v^{l}=0$, therefore, as the space is compact, we have $\nabla_{l} v^{l}=0$, that is, the vector becomes a Killing one.

Thus we have
THEOREM 6. In a compact pseudo manifold with ($f r, g$)-structure, a projective Killing vector v^{h} which admits f_{j}^{i}-invariant is a Killing vector.

Next, applying ∇_{k} to (4.1) anp transvecting with $g^{k j}$, we get

$$
\begin{aligned}
& f_{l}^{i} g^{k j} \nabla_{k} \nabla_{j} v-\frac{1}{2} f^{k j}\left(\nabla_{k} \nabla_{j} v^{i}-\nabla_{j} \nabla_{k} v^{i}\right)=0, \\
& f_{l}^{i} g^{k j} \nabla_{k} \nabla_{j} v-\frac{1}{2} f^{k j} K_{k j l} v^{i} v^{l}=0 .
\end{aligned}
$$

From (3.5) and (3.7), we have

$$
\begin{equation*}
f_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{i}\right)=0 . \tag{4.18}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
l_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{j}\right)=0 . \tag{4.19}
\end{equation*}
$$

Now, if a contravariant vector field v^{k} is orthogonal to the distribution M, then we have
(4.20) $\quad m_{l}^{i} v^{l}=0$.

Applying the Ricci formula to m_{l}^{i} and taking account of (2.13), we have

$$
\begin{equation*}
K_{k j l}{ }^{h} m_{i}^{l}-K_{k j i}{ }^{l} m_{l}^{h}=0, \tag{4.21}
\end{equation*}
$$

transvecting (4.21.) with $g^{j i}$, we get

$$
\begin{equation*}
K_{k}^{l} m_{l}^{h}=K_{k j l}{ }^{h} m^{j l}, \tag{4.22}
\end{equation*}
$$

since the tensor $m_{j l}$ is a symmetric in j and l, we have

$$
\begin{equation*}
K_{k}^{l} m_{l}^{h}=K_{l}^{h} m_{k}^{l} \tag{4.23}
\end{equation*}
$$

From (4.20) and (4.23), we have

$$
\begin{equation*}
m_{l}^{i}\left(g_{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{j}\right)=0 \tag{4.24}
\end{equation*}
$$

From (4.19) and (4.24), we find

$$
\begin{equation*}
g^{k j} \nabla_{k} \nabla_{j}+K_{j}^{l} v^{j}=0 . \tag{4.25}
\end{equation*}
$$

Thus we have
THEOREM 7. In a compact orientable pseudo manifold with ($f r, g$)-structure, if an f_{j}^{i}-invariant vector field v^{h} admits $m_{l}^{i} v^{l}=0$ and $\nabla_{l} v^{l}=0$, then it is a Killing vector.

§5. Integral formulae

Now, in a compact pseudo manifold with ($f_{r}, \mathrm{~g}$)-structure, we shall obtain a necessary and sufficient condition that a contravariant vector field v^{i} is f invariant, For f-invariant vector v^{i}, we have

$$
\begin{equation*}
f_{l}^{i} \nabla_{j} v^{l}-f_{j}^{l} \nabla_{l} v^{i}=0 . \tag{5.1}
\end{equation*}
$$

Operating ∇_{k} to the last equation, we get

$$
f_{l}^{i} \nabla_{k} \nabla_{j} v^{l}-f_{j}^{l} \nabla_{k} \nabla_{l} v^{i}=0 .
$$

Transvecting this equation with $g^{k j}$, we find
(5.2) $\quad f_{l}^{i} g^{k j} \nabla_{k} \nabla_{j} v^{l}-\frac{1}{2} f^{k l}\left(\nabla_{k} \nabla_{l} v^{i}-\nabla_{l} \nabla_{k} v^{i}\right)=0$.

Applying the Ricci formula to v^{i}, we have the following identities which arevalid in this manifold;

$$
\begin{equation*}
\nabla_{k} \nabla_{l} v^{i}-\nabla_{l} \nabla_{k} v^{i}=K_{k l j}^{i} v^{j} \tag{5.3}
\end{equation*}
$$

From (3.5) and (5.3), (5.2) becomes

$$
\begin{equation*}
f_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{i} v^{j}\right)=0, \tag{5.4}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
l_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{i} v^{j}\right)=0 . \tag{5.5}
\end{equation*}
$$

This equation is a necessary condition for a vector v^{i} to be f-invariant.
Next, we shall get a sufficient condition, For a contravariant vector v^{i}, if we sput

$$
T_{j i} \equiv\left(£ f_{v}^{a}\right) g_{a i}=-f_{j}^{l} \nabla_{l} v_{i}-f_{i}^{l} \nabla_{l} v_{j},
$$

then we have

$$
\begin{array}{r}
\frac{1}{2} T^{2}=\left(\nabla_{j} v_{i}\right)\left(\nabla^{j} v^{i}\right)-f_{j}^{l} f_{i}^{m}\left(\nabla_{l} v_{m}\right)\left(\nabla^{j} v^{i}\right)-\frac{1}{2} m_{t}^{l}\left\{\left(\nabla_{l} v_{i}\right)\left(\nabla^{t} v^{i}\right)+\right. \tag{5.6}\\
\left.\left(\nabla_{i} v_{l}\right)\left(\nabla^{i} v^{t}\right)\right\}
\end{array}
$$

:and

$$
\begin{align*}
\nabla^{j}\left(T_{j l} f_{i}^{l} v^{i}\right) & =\left(\nabla_{j} v_{i}\right)\left(\nabla^{j} v^{i}\right)-f_{j}^{l} f_{i}^{m}\left(\nabla_{l} v_{m}\right)\left(\nabla^{j} v^{i}\right) \tag{5.7}\\
& -m_{t}^{l}\left(\nabla_{i} v_{l}\right)\left(\nabla^{i} v^{t}\right)+l_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{j}\right) v_{i}
\end{align*}
$$

From (5.6) and (5.7), we get

$$
\begin{align*}
\frac{1}{2} T^{2}-\nabla^{j}\left(T_{j l} f_{i}^{l} v^{i}\right) & =-l_{l}^{i}\left(g^{k l} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{j}\right) v_{i} \tag{5.8}\\
& -\frac{1}{2} m_{t}^{l}\left\{\left(\nabla_{l} v_{i}\right)\left(\nabla^{t} v^{i}\right)-\left(\nabla_{i} v_{l}\right)\left(\nabla^{i} v^{t}\right)\right\}
\end{align*}
$$

On the other hand, for a contravariant vector v^{i}, we have

$$
\begin{equation*}
£_{v} m_{t}^{i} \equiv-m_{t}^{l} \nabla_{l} v^{i}+m_{l}^{i} \nabla_{t} v^{l}, \tag{5.9}
\end{equation*}
$$

from which we find

$$
\begin{equation*}
£_{v} m_{t}^{i}\left(\nabla^{t} v_{i}\right)=-m_{t}^{l}\left\{\left(\nabla_{l} v_{i}\right)\left(\nabla^{t} v^{i}\right)-\left(\nabla_{i} v_{l}\right)\left(\nabla^{i} v^{t}\right)\right\} \tag{5.10}
\end{equation*}
$$

If we put

$$
U_{j i}=m_{j}^{t}\left(\nabla_{t} v_{i}\right), \quad V_{j i}=m_{j}^{t}\left(\nabla_{i} v_{t}\right),
$$

then we have

$$
\begin{equation*}
U^{2}=m_{t}^{l}\left(\nabla_{l} v_{i}\right)\left(\nabla^{t} v^{i}\right), \quad V^{2}=m_{t}^{l}\left(\nabla_{i} v_{l}\right)\left(\nabla^{i} v^{t}\right) . \tag{5.11}
\end{equation*}
$$

From (5.10) and (5.11), the equation (5.8) may be written

$$
\begin{equation*}
\frac{1}{2} T^{2}-\nabla^{j}\left(T_{j l} f_{i}^{l} v^{i}\right)=-l_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{j}\right) v_{i}-\frac{1}{2}\left(U^{2}-V^{2}\right) \tag{5.12}
\end{equation*}
$$

'Hence, applying the Green's theorem, we have

LEMMA 1. In a compact pseudo manifold with (f_{r}, g)-structure, the integral formula

$$
\begin{equation*}
\int_{M n}\left\{\frac{1}{2} T^{2}+\frac{1}{2}\left(U^{2}-V^{2}\right)+l_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{j}\right) v_{i}\right\} d \sigma=0 \tag{5.13}
\end{equation*}
$$

is valid for any vector field v^{i}, where $d \sigma$ means the volume element of the .manifold M_{n}, and $T_{j i}=\left(\underset{v}{£} f_{j}^{l}\right) g_{l i}, U_{j i}=m_{j}^{t} \nabla_{t} v_{i}, \quad V_{j i}=m_{j}^{t} \nabla_{i} v_{t}$.

From this lemma, we have

THEOREM 7. In a compact pseudo manifold with (f, g)-structure, a necessary . and sufficient condition that a contravariant vector v^{i} is f-invariant vector is .that it satisfies

$$
l_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{i}+K_{j}^{l} v^{j}\right)=0 \text { and } U^{2}=V^{2}
$$

Now, If a contravariant vector v^{i} is orthogonal to the distribution M, that is,

$$
\begin{equation*}
m_{l}^{i} v^{l}=0 \tag{5.14}
\end{equation*}
$$

:Operating ∇_{j} to the last equation, we get

$$
m_{l}^{i} \nabla_{j} v^{l}=0
$$

from which we have $V_{j i}=0$.
On the other hand, transvecting (3.7) with f_{h}^{i}, we find

$$
\begin{equation*}
K_{j}^{r} m_{r}^{i}=K_{r}^{i} m_{j}^{r} . \tag{5.15}
\end{equation*}
$$

From (5.14) and (5.15), we get

$$
\begin{equation*}
m_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{j}\right)=0, \tag{5.16}
\end{equation*}
$$

from which we have

$$
\begin{equation*}
l_{l}^{i}\left(g^{k j} \nabla_{k} \nabla_{j} v^{l}+K_{j}^{l} v^{j}\right)=g^{k j} \nabla_{k} \nabla_{j} v^{i}+K_{j}^{i} v^{j} \tag{5.17}
\end{equation*}
$$

by virtue of (1.2).

Thus we have

LEMMA. 2. In a compact pseudo manifold with $\left(f_{r}, g\right)$-structure, the integral formula

$$
\begin{equation*}
\int_{M n}\left\{\frac{1}{2} T^{2}+\frac{1}{2} U^{2}+\left(g^{k j} \nabla_{k} \nabla_{j} v^{2}+K_{j}^{i} v^{j}\right) v_{i}\right\} d \sigma=0 \tag{5.18}
\end{equation*}
$$

is valid for any vector field v^{i} which is orthogonal to the distribution M, where: $d \sigma$ means the volume element of the manifold M_{n}, and

$$
T_{j i}=\left(£ f_{j}^{l}\right) g_{l i}, \quad U_{j i}=m_{j}^{t}\left(\nabla_{t} v_{i}\right)
$$

From this lemma, we have

THEOREM 8. In a compact pseudo manifold with (f_{r}, g)-structure, a necessary and sufficient condition that a contravariant vector v^{i} which is orthogonal to the: distribution M is f-invariant is that

$$
g^{k j} \nabla_{k} \nabla_{j} v^{i}+K_{j}^{i} v^{j}=0
$$

From this theorem, we have

THEOREM 9. In a compact orientable pseudo manifold with (f_{r}, g)-structure, a necessary and sufficient condition that f-invariant vector v^{i} which is orthogonal to the distribution M is a Killing vector is that it satisfies $\nabla_{l} l^{l}=0$.

6. Pseudo Einstein manifold.

In this section, we shall consider a compact pseudo Einstein manifold with: (f_{r}, g)-structure and give a theorem of f - invariant vector v^{i}. This theorem corresponds to Matsushima's theorem in a compact Einstein Kaehlerian space.

Now, we shall consider a contarvariant vector v^{i} satisfying

$$
\begin{equation*}
\underset{v}{£} f_{j}^{i}=0 \text { and } m_{h}^{i} v^{h}=0 \tag{6.1}
\end{equation*}
$$

from which we find

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v^{h}+K_{r}{ }^{h} v^{r}=0 \tag{6.2}
\end{equation*}
$$

by virtue of (5.19).
As M_{n} is an Einstein manifold, it holds that

$$
\begin{equation*}
K_{j i}=c g_{j i}, \quad c=\frac{K}{n}, \tag{6.3}
\end{equation*}
$$

where $c \neq 0$.
Inthis case, (6.2) may be written the following

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v^{h}+c v^{h}=0 . \tag{5.4}
\end{equation*}
$$

Operating ∇_{h} in the last equation, we have

$$
\begin{equation*}
\nabla^{r} \nabla_{r}\left(\nabla_{h} v^{h}\right)+2 c\left(\nabla_{h} v^{h}\right)=0 \tag{6.5}
\end{equation*}
$$

If we put

$$
\text { (6.6) } \quad \phi=\nabla_{h} v^{h}
$$

then te equation (6.5) is written as

$$
\begin{equation*}
\nabla^{r} \nabla_{r} \phi+2 c \phi=0 \tag{5.7}
\end{equation*}
$$

If a scalar function ϕ is a solution of (6.7), the equation

$$
\begin{equation*}
\nabla^{r} \nabla_{r} \nabla_{i} \phi+c \nabla_{i} \phi=0 \tag{6.8}
\end{equation*}
$$

is valid for an f-invariant vector v^{i} in this manifold. Hence the gradient ∇_{i} of ϕ for an f-invariant vector v^{i} is also f-invariant vector.

Now, we put
(6.9) $\quad p^{h}=v^{h}+\frac{1}{2 c} \nabla^{h} \phi$,
then the vector p^{h} is an f-invariant vector.
Operating ∇_{h} to the equation (6.9) and taking account of (6.7), we have

$$
\begin{equation*}
\nabla_{h} p^{h}=0 \tag{6.10}
\end{equation*}
$$

from (6.4) and (6.8), we get
(6.11) $\quad \nabla^{r} \nabla_{r} p^{h}+K_{r}{ }^{h} p^{r}=0$.

Hence the vector p^{h} is a Killing vector.
Neot, we put

$$
\begin{equation*}
q^{h}=f_{l}^{h}\left[\frac{1}{2 c} \nabla^{\prime} \phi\right], \tag{6.12}
\end{equation*}
$$

then we find

$$
\begin{equation*}
m_{h}^{i} q^{h}=0 \tag{6.13}
\end{equation*}
$$

Hence the vector q^{h} is an f-invariant and orthogonal to the distribution M. Operating ∇_{h} to the equation (6.12), we have [7]

$$
\begin{equation*}
\nabla_{h} q^{h}=0 \tag{6.14}
\end{equation*}
$$

Hence, by the theorem 9, the vector q^{h} is a Killing vector.
From (6.9), we have

$$
\begin{equation*}
v^{h}=p^{h}-\frac{1}{2 c} \nabla^{h} \phi . \tag{6.15}
\end{equation*}
$$

Transvecting this equation with l_{h}^{i} and taking account of (1.2) and (6.12), we get

$$
v^{i}-m_{h}^{i} v^{h}=l_{h}^{i} p^{h}+f_{h}^{i} q^{h} .
$$

From the second term of (6.1), the last equation may be written as

$$
\begin{equation*}
v^{i}=l_{h}^{i} p^{h}+f_{h}^{i} q^{h} . \tag{6.16}
\end{equation*}
$$

where p^{h} and q^{h} are Killing vectors.
If an f-invariant vector v^{i} which is orthogonal to the distribution M is represented in the following difference form;
(6.17) $\quad v^{i}=l_{h}^{i} p^{\prime h}+f_{h}^{i} q^{\prime h}$.

From (6.16) and (6.17), we have

$$
l_{h}^{i}\left(p^{h}-p^{\prime h}\right)+f_{h}^{i}\left(g^{h}-g^{\prime h}\right)=0
$$

Transvecting the last equation with f_{i}^{l}, we have

$$
\begin{equation*}
f_{h}^{l}\left(p^{h}-p^{\prime h}\right)-\left(q^{l}-q^{\prime l}\right)=0 \tag{6.18}
\end{equation*}
$$

by virtue of (6.13).
Operating ∇_{l} the equation (6.18) and taking account of (6.14), we find
(6.19) $\quad f_{h}^{l} \nabla_{l}\left(p^{h}-p^{\prime h}\right)=0$,
from which we have
(6.2J)

$$
p^{h}=p^{\prime k}
$$

From (6.18) and (6.20), we have
(6.21) $\quad q^{h}=q^{h}$.

Thus we have

THEOREM 10. In a compact pseudo Einstein manifold with ($\left.f_{r}, g\right)$-structure, an f-invariant vector v^{i} which is orthogonal to the distribution M is uniquely represented in the form;

$$
v^{i}=l_{h}^{i} p^{h}+f_{h}^{i} q^{h},
$$

where p^{h} and q^{h} are Killing vectors.

Taegu Teacher's College
Taegu, Korea

References

[1] Kodo, S., Infinitesimal transformations of a manifold with f-structure, Kodai Math. Reports, 16(1964), 116-126.
[2] Kodo, S., Some theorems on almost Kahlerian spaces, Journ. Math. Soc. Japan, 12 (1960), 422-433.
[3] Shoji, W., Some transformations in certain special Kawaguchi spaces, Tensor, New Series, 12(1962), 244-253.
[4] Yano, K., On a structure defined by tensor field f of type (1,1) satisfying $f^{3}+f=0$, Tensor, New Series, (1963), 99-109.
[5] Yano, K., On analytic vectors, Sugagu, Japan, 8(1957), 1-14.

