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This paper continue to study a problem proposed by S. M. Ulam that given 

the class of all homeomorphisms of a topological space, what other topologies 

exist on the same set which have these mappings as the class of all their 

homeomorphisms. 

Let H(X,2Y) be the class of all homeomorphisms of a topological space (X, 

2Y) onto itself. It has been constructed in [1] , [2] , [3] and [4] many different 

topologies r for X such that H(X , 2Y) ~H(X， r). However all topolozies. 

constructed for X ever since are either non-Hausdorff or non-compact. The 
rigid continua of DeGroot and Wille [5] which have only the identity map as 

homeomorphism show the existence of non-homeomorphic continua with the 
same class of homeomorphisms. But we are going to construct non-rigid, non­

homeomorphic continua with the sam~ class of homemorphisms by repeatedly 

applying the following two theorems. 

First we state without proof two simple lemmas. 

LEMMA 1. Let (X ,2Y) b3 a topolog t"cal space and let P(V) bø a topologz'cal 

property possessed by certain subsets V of X. If r = {V: P(V)} is a topology for 

X , then H(X , 2Y)cH(X, r). 

LEMMA 2. Let P be a point in a H ausdorff space (X, 2Y). Let P(V) mean that 

VE 2Y and pEV or X V z's compact. Ifr={u:p(U)} , then (X， γ) is a 

topological space and rc2Y. Moreover, (X , γ) is a Hausdorff spac3 if and only 

if (X ,2Y) is locally co얘zpact at all q:þ.p. 

THEOREM 1. Let X ,2Y, γ， and p be as in Lemma 2. Suppose the following two­

coηditions are satisjied: 

(a) f(p) =p for all f iη H(X , 2Y) UH(X, r) , 
(b) if P E Cl(A)-A and g E H(X -p, UIX -P) then P E Cl(g(A)). 

Then H(X ,2Y)=H(X,r). 

PROOF. Since f(P)=P for allfin H(X,2Y), P(V) is a topological property and' 

hence by Lemma 1, H(X,2Y)cH(X, γ). 

lf fE H(X， γ) ， then by (a) , f(p)=p for all f inH(X,r) and by the­

construction of γ， we have rlx-p= 2Y IX-p and flX-p is bicontinuous at. 

every q in X - P relative to U I X -p. Since (X,2Y) is Hausdorff, f is bicontinuous.. 
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at each q in X -p relative to ~. 

hence 1 is also in H(X, ~). 
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By (b) 1 and 1-1 are also continuous at p and 

The next theorem is to reverse the order of constructing the topology, but 

the proof is essentially same as THEOREM 1. 

THEOREM 2. Let p be a point 찌 a H ausdorll space (X，~) and V in ~ μIhich 

does not contain p. By ~n we denote the neighborhood system (ηot necessary oPen) at q 

q trη (X，~). Let rq =~q ilq=f:.pand rp={U-V;UE~p}and letrbethetopology 

generated by taki~ r q as a base 01 the neighborhood system at q. 11 the lollow­

ing two conditions are satislied: 

(a) I(p)=p lor all 1 in H(X， ~)UH(X， r) ， 

(b) 11 PfCI(A) , then pECI(g(A)) for each A ζ X-p and gf H(X-p, 
~IX-p). 

then H(X，~) =H(X, r) 

PROOF. By (a) and LEMMA 1, H(X , ~)cH(X， r). If 1ε H(X， γ) ， then by 

(a) again ~IX -p=γI X - p, and therefore 1 is bicontinuous at each q in X - p. 

By (b) and (a) , 1 and 1-1 are also continuous at p and hence IE H(X , ~). 

1n the following example, we apply THEOREM 1 and THEOREM 2 to construct 

different continua topologies for a set but with the same class of homeomor­

phisms. We show by a sequence of diagrams the spaces and procedures of 

construction. 

1n Figure 1 (X , ~I) is a plane continuum. Let V =X -p and apply THEOREM 2 

and denote the new topology by ~2， then H(X , ~I) =H(X, ~2) and (X, ~2) can 

be described by Figure 2 with the usual topology. By applying THEOREM 1 to 

(X, ~2) with respect to the point q and denoting the topology constructed by ~3 

we have H(X , ~2) =H(X, ~3) and (X, ~3) can be described by Figure 3 with 

the usual topology. We then apply THEOREM 2 again to (X, ~3) and get (X, 

íY 4) as shown in Figure 4 apply THEOREM 1 to (X, ~4) with respect to p and 

we get (X, ~6) as in Figure 5 which is a continuum and H(X, ~I) =H(X, ~6). 

QUESTION. Let (X，~) be the closed interval [0, 1J with the usual topology. 

Does there exist a topology γ for X such that (X, γ) is a continuum r(Z, íY) 
is not homeomorphic to (X,r) and H(X， ~)=H(X， r)? 
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