CONTINUA WITH THE SAME CLASS OF HOMEOMORPHISMS

By Yu-Lee Lee

This paper continue to study a problem proposed by S. M. Ulam that given the class of all homeomorphisms of a topological space, what other topologies exist on the same set which have these mappings as the class of all their homeomorphisms.

Let $H(X, \mathscr{U})$ be the class of all homeomorphisms of a topological space (X, \mathscr{U}) onto itself. It has been constructed in [1], [2], [3] and [4] many different topologies \mathscr{V} for X such that $H(X, \mathscr{U}) = H(X, \mathscr{V})$. However all topologies constructed for X ever since are either non-Hausdorff or non-compact. The rigid continua of DeGroot and Wille [5] which have only the identity map as homeomorphism show the existence of non-homeomorphic continua with the same class of homeomorphisms. But we are going to construct non-rigid, non-homeomorphic continua with the same class of homeomorphisms by repeatedly applying the following two theorems.

First we state without proof two simple lemmas.

LEMMA 1. Let (X, \mathscr{U}) be a topological space and let P(V) be a topological property possessed by certain subsets V of X. If $\mathscr{V} = \{V: P(V)\}$ is a topology for X, then $H(X, \mathscr{U}) \subset H(X, \mathscr{V})$.

LEMMA 2. Let p be a point in a Hausdorff space (X, \mathscr{U}) . Let P(V) mean that $V \in \mathscr{U}$ and $p \in V$ or X - V is compact. If $\mathscr{V} = \{U: P(U)\}$, then (X, \mathscr{V}) is a topological space and $\mathscr{V} \subset \mathscr{U}$. Moreover, (X, \mathscr{V}) is a Hausdorff space if and only if (X, \mathscr{U}) is locally compact at all $q \neq p$.

THEOREM 1. Let $X, \mathcal{U}, \mathcal{V}$, and p be as in Lemma 2. Suppose the following twoconditions are satisfied:

(a) f(p) = p for all f in $H(X, \mathcal{U}) \cup H(X, \mathcal{V})$, (b) if $p \in Cl(A) - A$ and $g \in H(X-p, U|X-p)$ then $p \in Cl(g(A))$. Then $H(X, \mathcal{U}) = H(X, \mathcal{V})$.

PROOF. Since f(p) = p for all f in $H(X, \mathcal{U}), P(V)$ is a topological property and hence by Lemma 1, $H(X, \mathcal{U}) \subset H(X, \mathcal{V})$.

If $f \in H(X, \mathscr{V})$, then by (a), f(p) = p for all f in $H(X, \mathscr{V})$ and by the construction of \mathscr{V} , we have $\mathscr{V}|X-P=\mathscr{U}|X-p$ and f|X-p is bicontinuous at every q in X-p relative to U|X-p. Since (X, \mathscr{U}) is Hausdorff, f is bicontinuous.

2

Yu-Lee Lee

at each q in X-p relative to \mathcal{U} . By (b) f and f^{-1} are also continuous at p and hence f is also in $H(X, \mathcal{U})$.

The next theorem is to reverse the order of constructing the topology, but the proof is essentially same as THEOREM 1.

THEOREM 2. Let p be a point in a Hausdorff space (X, \mathcal{U}) and V in \mathcal{U} which does not contain p. By \mathcal{U}_q we denote the neighborhood system (not necessary open) at q in (X, \mathcal{U}) . Let $\mathcal{V}_q = \mathcal{U}_q$ if $q \neq p$ and $\mathcal{V}_p = \{U - V; U \in \mathcal{U}_p\}$ and let \mathcal{V} be the topology generated by taking \mathcal{V}_q as a base of the neighborhood system at q. If the follow-

ing two conditions are satisfied:

(a) f(p) = p for all f in $H(X, \mathscr{U}) \cup H(X, \mathscr{V})$,

(b) If $p \in Cl(A)$, then $p \in Cl(g(A))$ for each $A \subset X-p$ and $g \in H(X-p, \mathcal{U}|X-p)$.

then $H(X, \mathscr{U}) = H(X, \mathscr{V})$

PROOF. By (a) and LEMMA 1, $H(X, \mathscr{U}) \subset H(X, \mathscr{V})$. If $f \in H(X, \mathscr{V})$, then by (a) again $\mathscr{U}|X-p=\mathscr{V}|X-p$, and therefore f is bicontinuous at each q in X-p. By (b) and (a), f and f^{-1} are also continuous at p and hence $f \in H(X, \mathscr{U})$.

In the following example, we apply THEOREM 1 and THEOREM 2 to construct different continua topologies for a set but with the same class of homeomorphisms. We show by a sequence of diagrams the spaces and procedures of construction.

In Figure 1 (X, \mathscr{U}_1) is a plane continuum. Let V = X - p and apply THEOREM 2 and denote the new topology by \mathscr{U}_2 , then $H(X, \mathscr{U}_1) = H(X, \mathscr{U}_2)$ and (X, \mathscr{U}_2) can be described by Figure 2 with the usual topology. By applying THEOREM 1 to (X, \mathscr{U}_2) with respect to the point q and denoting the topology constructed by \mathscr{U}_3 we have $H(X, \mathscr{U}_2) = H(X, \mathscr{U}_3)$ and (X, \mathscr{U}_3) can be described by Figure 3 with the usual topology. We then apply THEOREM 2 again to (X, \mathscr{U}_3) and get (X, $\mathscr{U}_4)$ as shown in Figure 4 apply THEOREM 1 to (X, \mathscr{U}_4) with respect to p and we get (X, \mathscr{U}_5) as in Figure 5 which is a continuum and $H(X, \mathscr{U}_1) = H(X, \mathscr{U}_5)$. QUESTION. Let (X, \mathscr{U}) be the closed interval [0, 1] with the usual topology. Does there exist a topology \mathscr{V} for X such that (X, \mathscr{V}) is a continuum $\mathscr{V}(Z, \mathscr{U})$ is not homeomorphic to (X, \mathscr{V}) and $H(X, \mathscr{U}) = H(X, \mathscr{V})$?

--

.

· · · · ·

Continua with the same class of homeomorphisms

-

1

.

• -

Figure 1

Þ

Yu Lee Lee

University of Florida Gainesville, Florida U. S. A.

.

•

BIBLIOGRAPHY

[1] Yu-Lee Lee; Dissertation, University of Oregon, Eugene, 1964.

4

- [2] Yu-Lee Lee: Topologies with the same class of homeomorphisms, (to appear in Pacific J. Math)
- [3] Yu-Lee Lee; Coarser Topologies with the same class of homeomorphisms, Notice AMS (1964), p. 770.
- [4] Yu-Lee Lee; Finer topologies with the same class of homeomorphisms, Notice AMS (1965), p.136
- [5] J. DeGroot & R.J. Wille; Rigid continua and topological group-pictures, Archiv. der Math., Vol. 9(1958), pp. 441-446.
- [6] S.M. Ulam; A Collection of Mathematical Problems. Interscience, N.Y. 1960.

- 1. Presented to the society, November 23, 1965.
- 2. This research was supported by the National Science Foundation, U.S.A. under grant number GP-1457 .