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TRIGONOMETRY IN A HYPERBOLIC SPACE

BY

KYONG T. HAHN

1. Introduction. We consider a non-euclidean triangle in the Kiihler maniffold (H, M)

furnished with the Bergman metric M(H) on the hypersphere H in the corpplex euclidean

space 0 of complex dimension n. (Throughout this paper, nstands for any integer :;;:::2.)

By a non-euclidean triangle we mean a geodesic triangle with the ordinarY';lDgle, replaced

by the analytic angle (see §2 for definition).

The main object of this paper is to study on a given non-euclidean triangle in (H~ M)

some basic trigonometric identities, such as the laws of sines and cosines ,which arise in

hyperbolic geometry, and related problems. For a non-euclidean triangle in'(H, M) the hlW

of sines holds while the law of cosines may not. The law of cosines holds if and only if

one of the three angles of the non-euclidean triangle is equal to the corresponding ordinary

angle (see §3). From this fellows immediately a stronger form of Pythagorean theorem

obtained in [2J. As was pointed out in [2J the following statement is not true in general:

Through a point c in H not lying on a given geodesic "IH at the right analytic angle.

Theorem 4. 1 gives such an example. A necessary and sufficient criterion that the above

statement be true is given in Theorem 4.2. There are domains D in which the theorems

in §3 fail to hold in (D, M). Such examples are exhibited in §5.

2. Preliminaries. We consider a bounded domain D in the complex euclidean space C­
of complex dimension n with the coordinates z= (zt, .... ", Z"). The Bergman metric

M(D) : dsD
2=T...,- dt'difJ

of D is kahlerian and invariant under biholomorphic mappings of D[lJ; here we use the

summation convention.

For any tangent vectors u=(u"') and v=(lP) at z in the Kahler manifold (D,M') we let

(2.1) [u, v]=T...,-u"'vfJ, 11 U 11 2=[u, u]. ,

If two vectors u and v are independent in OCR), these vectors determine a plane section,

S(u, v) =[W=Au+pl, where A, p. are real parameters. Let S,,(u, v) be a section defined

by two tangent vectors u and v at z in D. It is called real if Im[u, v] =0 at z and analytic

if v=).u for some .ilEG. The ordinary angle e between two vectors u and v at zED is

given by

(2.2) cos e= I [u, v] I / 11 u 1\ 1\ vII.

Besides the ordinary angle we use the notion of anlytic angle. It is given by

(2.3) cos F= I [u, v] I / 11 u 11 11 v 11, 0:5:,F:::;':r/2.

We observe that (1°) e:;;:::F and the equality holds if and, only if the section S.(u, v) is
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(3.2)

(2. 4)

(3.1)

(2.5)

seal and (2°) F=O if and only if S.(u, v) is analytic. Since the metric M(D) is invariant,

all geometric quantities ddined on (D, M) are invariant under biholomorphic mappings

of D.
We remark that the formulas from (2. 1) to (2.3) may be used to define the corres·

ponding quantities in the euclidean measure if the metric tensor T"7f is replaced by a"7f'

We now consider the hypersphere

H=[z: Izl <1], Izlz=(z, z).

The Bergman metric of H is

M(H): ds~(z)=(n+l)(I-lzj2sinzf)(I-lzj2)-Zldzl z,

where f is the euclidean analytic angle between two vectors z and dz (see also [2] for
definition). Let a and b ty~ two points in H. The holomorphic automorphism of H which

maps b into the origin Q is
w=w(z) =q(z-b) (l-b*z)-Ir-I,

qq=(I-bb*)-I, r*r-(l-b*b)-l, Ibl <1
and I is the n x n identity matrix and b* denotes the complex conjugate transpose of b.
Under this mapping the point a i~ mapped into the point

w(a) =A=q(a-b) (l-b*a) -Ir-I,

IAlz=(A, A)=C1a-bI 2 -b2 (P) / 11-(a, b)1 2

where b(P) is the B-area of the parallelogram P determined by a, b and the origin (sce [2]).

3. The laws of sines and cosines. For any pair of points a and b in H there is a unique
shortest geodesic -/H (a, b) connecting a and b, and it is given by the image curve of the
straight line segment connecting the origin with A, the image of a under (2. 4), under

the inverse mapping z=z(w) of (2.4). Hence three pQints a, band c in H determine a

non-euclidean triangle L:.. uniquely.

THEOREM 3.1. Let L:.. be a non-euclidean triangle in (H, M) wlwse three (non-euclidean

analytic) angles are F I , Fz and Fa. Let g. be tIle rW"l-euclidean lengths of three sides of

L:.. opposite to F" i =1, 2, 3. Then
sin F I sin Fz sin Fa

sinh--g-I -\- sinh gz I sinh g. I

(n+lF (n+l):!" Cn+lp'

Proof. First we consider a non<~uclidean triangle L:.. of vertices a, b and the ongm o.
Let F h Fz and Fa be the angles of l:!.. at the vertices a, band 0, respectively, and f. the

corresponding angles of F. in the euclidean measure. By definition we have

cosfl= ICb-a, a) I /Ia-bllal

COSf2= I(a-b, b) I / Ihlla-bl

cosfa= I (a, b), /Iallbl.
From Lemma 3.1 in [2] it can b.; "howo by a forma! computation that

c,in' F,- q"- IflI 2 "1l)"'(I') / laj"r.!a .-111 2 _ -b'CP)

(3.3) sin" .r~=(l-lbl~jb:(Pj / Ibl"Cla-bl"-b"UJ))

sin2 Fa=b"CP) / lal"I!;I",
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where b(P) denotes the B-area of the parallelogram P determined by a, band o. From
Lemma 4. 1 in [2J we have

sinh2(3.4)

where A is given in (2.5).

gs 1 =IAI 2 j(l-IAI 2),

(n+ 1) 2"

S· l-IAI2- (1-laI 2)(l-lbI 2)
mce - 11- (a, b) 12 , we obtain

(3.5)

In particular.

sinh2 _~g,,-s--:-­
I

(n+ 1)2

(3.8)

sinh2---.KJ_1 = Ibl 2j (1-lbI 2)
(n+1)2

(3.6) sinh2 gs 1 =lal s /(1-1aI 2).

(n+1)Z

The theorem follows from (3.3), (3.5) and (3.6) if one of the vertices, say c, is the

origin. If c is not the origin. the mapping

w=w(z) =q(z-c) (l-c*z) -Ir-I,

(3.7) qq=(1-CC*)-I, r*r=(l-c*c)-l, Icl <1,

maps c into the origin. Let A and B be the respective images of a and b under this
mapping. Since gl =g(o, B) =g(b, c) , gs=g(o, A) =g(a, c), gs=g(A, B) =g(a, b) and the angles

are invariant. the theorem now follows. Here g(a, b) denotes the non-euclidean length of

the shortest geodesic joining a and b.

THEOREM 3. 2. Let A be a non-euclidean triangle in (H, M) with the same notations

as in Theorem 3.1. Then

(3.7) cosh gs cosh gl cosh gs
1 1 1

(n+1)T (n+l)Z (n+ 1)2

-sinh gl sinh gs cosFs1 1
(n+l)Y (n+l)Y

if and only if Fa=as' where as is the corresponding ordinary angle of Fa.

Proof. In view of the proof of Theorem 3. 1 it suffices to prove the theorem for the
case where one of three vertices a, band. c, say c, is the origin o. From. (3. 4) we obtain

cosh _-2
g

",-S--;­
1

(n+1)Y

In particular. cosh gill/ Cl-IbiS)"}, cosh gs 1 1/ (l-laIS)t.
(n+l)2 (n+l)2

·From (3.3) we also have cos Fs= I(a, b) 1/ lallbl. It can be easily checked that (3.7)
holds if and only if Im (a, b)=O or Fs=fJs at the origin.

In pariicuar. if Fs=90° in Theorem 3.2 we have the following stronger form of the

non-euclidean Pythagorean theorem:
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THEOREM 3.3. Let b. be a non-euclidean triangle in (H. M) with the same notations as

in Theorem 3. 1. Then

cosh gs 1 cosh g\ I cosh g2 1

(n+l)Z (n+l)Z (n+lF

holds if and only if Fs= 90° . (Compare with Theorem 4.2 in [2]).

Since the metric M(H) is invariant the above theorems hold for any domain which is

biholomorphically equivalent to the hypersphere. in particular. for any bounded domain

furnished with the complete Bergman metric with constant sectional curvature. The second

part. follows :from the result due to K. It Look [6) which states that any bounded domain

D furnished with the complete Bergman metric with constand sectional curvature is

biholomorphically equivalent to the hypcrsphere.

4. Perpendiculars in the Space (H. M). As was pointed out in [2] the following

statement is not true in general: Through a point in (fI, M) not lying on a given geodesic

"Ill there exists at least one geodesic intersecting "IH at the right analytic angle. It may

be shown as follows: Since the geodesic "IH(a. b) joining two points a and b in (H. M)

is .the. image curve of the straight line oA, where A is given in (2.5), under the inverse

mapping

(4.1)

of (2.4),

(4.2)

where

1 \

z=z(w)=((1-lbI 2)"2"wr+b) / (1-(l-lbI 2)2wrb*)

the parametric equation of "Ig(a, b) is given by

z=(Pt+b) / (1+(P. b)t). O:::;;t:::;;l.

•
(4.3) P=(pI, ······.P")=(a-b)(l-b*a)-\

A formal computation shows that

(4.4) p=a.i(1-lbI 2) /(1-(a, b))-b'
and hence. zi / zP=a i / aP for all t, O:::;;t:::;;l. if bi/bp=aJ/aP for j*p. From this we obtain

LEMMA 4.1. Let a and b bd two points in H which determine a plane section Sea, b).

If sea. b) is anaytic then the geodesic -'H(a, b) lies completely on the section Sea. b).

The following theorem follows immediately from Lemma -to 1.

THEOREM .1. 1. Through a point in H not lying on a given geodesic "IH there may not

exist a geodesic which intersects "IH at the right analytic angle.

Further we have

THEOREM 4.2. Through a point c in H not lying on a given geodesic "I H there exists a

geodesic which intersects "Ill at the right analytic angle z1 and only if there are two distinct

points a and b on "IH such that the the two tangent vectors at c along "IHCa. b) and "IH(b. c)

form a real section at c.

Proof. Frist we take c to be the origin 0 and "I H to be any geodesic which does not

pass through the origin. Let a. b be two distinct points on "I H. The equation of "I H is then

given by (4.2) with a real parameter t. A straightfurward compuLttioll yields

(4.1)

and
dz / dt=P(l-b*b) / (1 + Pb*t)2

- 2 1-



val 4, No. 1. 1961. 10.

(4.6) [dz/dl. z]=(n+I)(dz/dl. z)/(1-lzI 2)2.

We look for the real solution I of the equation:

(4~ 7) (dz / dt. z)=o
or ' (P(l-b*b), Pt+b)=O

From I-bb*)o, we have I-b*b)O (see p.33. [4]). Hence P(l-b*b)P*=CP-:-Pb*p)P*

=IP{3-IPb*1 2 )o, and the solution of (4.7) is given by

t=-Pb*(I-lbI 2
) / (IPf2-IPb*1 2

).

The solution t is real if and only if Im (P, b)=O. A formal, computation shows that

Im(P. b)=lm(a, b)(I-lbI 2). Hence there exists a geodesic through the origin 0 which

intersects ')'". at the right analytic angle if and only if Im[a, bJ=Im(a. b)=O. If c is not

the origin. applying the mapping (3. 7) in H which maps c into the origin we can reduce

to the above case.

5. Examples. In this section we exhibit domains D in which the theorems in §3 or

similar theorems fail to be true in (D. M). Such domains arise among the class of domains

which are not bihoIomorphically equivalent to the hypersphere H. This class includes

simple domains such as the polydisc P=[z: /zj/ <1. j=l. 2•......• n] and the cI.assical Cartan
domain of type I: R=[Z: [-ZZ*)OJ. where Z is an nxm matrix of complex elements

(n:d:m22). z* its conjugate transpose and [ the identity matrix of order 11. P is a
reducible symmetric domain while R is an irreducible symmetric domain. It is known that

M(P): ds,,(z)T". IdZ'"1'=2 i:. (I-IZ"'1 2)-2Idz«1
"=1

and

M(R:): ds':,(Z)=u«I-ZZ*)-IdZ([-Z*Z)-IdZ*) (see [3J or [7])•.-
where u denotes the trace of the matrix. Furthermore, if a and b are two points on P the n

I

(5. 1) . gp(a, b) =2-t ltl log2 i=18;: r.
where Q.'=CfJJ-ai ) / (I-a-ibi). and

t t

(5.2) gR(A. B)=( n~m rT~110g2 ~=t r
for any two points A and B in R. where AJ are the positive square roots of the charac­

teristic roots of the matrix

(5. 3) (B-A) (l-A*B)-I(B*-A*) (l-AB*)-I

and I)AI 2······:d:A.:d:O [3].

Example 1. The bicylinder B=[z: IZ"'I <1. a=I.2J in the space, 0 and the pojlts

a=({,+} b=(- ~ •+) and 0= (0. 0) in B. At the origin we have T...=2,for

a=l, 2. Hence angles in both the euclidean measure and non-euclidean measure coincide

at the origin. Let Ft> F2t and Fa denote the non-euclidean analytic angles of the triangle

abo at a. band o. resp~ctivly. Then cos Fs=cosfa= I(a. b) I1 lallbl =0. Since the

holomorphic automorphism.

(5.4) uP=(z"-a")/(I-a-°Z"). a=I.2.
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, ,of B maps a, band 0 into w(a) =0, web) and w(o) =-a, respectively, cos F I =I(w(b),
1 I

w(o» I/Iw(b) llw(o) 1=61/ (8762p-. Similarly, cos Fz=71 / (8762)"1. Further, form (5.,1)
, I I I

we have gB(a, b) =(logZ 2 + logZ 3y:r, go (a, a) =gB(o, b) =2-2 (logZ 2+10g2 3)2. A numerical

computation now shows that Theorems 3. 1~3. 3 fail to be true in this case.

Example 2. The classical Cartan domain R of type I for n=m:;;:t2 and the poin~

1 0 r- ~ 02"
A= B=

0 1 0 1
:r \ -2--

inR. Let FI , Fz and F3 denote the non-clldid~;1!1 analY'lic angles of the triangle ABo at

A, Band 0, respectively. From the metric M(R) we sce that
I I

(5. 5) cos Fs=cosfs= I11(AB*) 1/ q(AA*) 2 (J(BB*)"2

at the origin 0 and, hence, cos Fz=O. The holomorphic automorphism
(5. 6) W=Q(Z-A) (l-A*Z)-JR-I, I-AA*=(Q*Qy-I=(RR*)-1 [3]

of R maps A, Band 0 into W(A) =0, WeB) and W(O) = -QAR-I.

(
2/v'"3" 0)It is easy to see that Q=R= , and hence,

o 3/(v' 2 )3

W(o)=- (2
0

1

- : and W(B)= - ~ :

3 °5
I I

A formal computation shows that cos F I =61/ (8762)"2". Similarly, C06 Fz=71j (8762)"2".
I 1

Further, from (6.2) and (5.3) wc obtain that gR(A, B)=22"(1og22+log3)2, gR(A, 0)
I

= (logZ 2+10gZ3)"2=gR (0, B). At> Ildun: this shows t.h:lt the theorems in §3 are not true

in this case.

It would be of interest to invest ig:llc whether or \lot I he theorems ill §:~ or similar theorems

should hold in a ,.symmetric domain which is not a biholomorphic im.lgc of qlC hypcrsphere

when it is furnished with a suitable metric.
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