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TRIGONOMETRY IN A HYPERBOLIC SPACE

BY.
KYONG T. HAHN

1. Introduction. We consider a non-cuclidean triangle in the Kahler maniffold (H, M)
furnished with the Bergman metric M(H) on the hypersphere H in the complex euclidean
space C* of complex dimension # (Throughout this paper n .stands for any integer >2.)
By a non-euclidean triangle we mean a geodesic triangle with the ordinary.angle replaced
by the analytic angle (see §2 for definition), -

The main object of this paper is tostudy on a given non-euclidean triangle in (H, M)
some basic trigonometric identities, such as the laws of sines and cosines which arise in
hyperbolic geometry, and related problems. For a non-euclidean triangle in':(H, M) the law
of sines holds while the law of cosines may not. The law of cosines holds if and only if
one of the three angles of the non-euclidean triangle is equal to the corresponding ordinary
angle (see §3). From this fcllows immediately a stronger form of Pythagorean theorem
obtained in [2]. As was pointed cut in [2] the following statement is not true in general:
Through a point ¢ in H not lying on a given geodesic ¥» at the right analytic aﬁéle.
Theorem 4.1 gives such an example, A necessary and sufficiént criterion that the above
statement be true is given in Theorem 4.2, There are domains D in which the theorems
in §3 fail to hold in (D, M). Such examples are exhibited in §5. -

2. Preliminaries. We consider a bounded domain D in the complex euclidean space C*
of complex dimension »n with the coordinates z=(z!, ----- s 2. The Bergman metric

MW@D): dsp*=Tagddzf
of D is kahlerian and invariant under biholomorphic mappings of D[1]; here we use the
summation convention. '

For any tangent vectors #=(u*) and »=(») at z in the Kahler manifold (D, M) we let
@n [ty v)=Taguv?, Wull*=[u, ul. -

If two vectors # and v are independent in C*(R), these vectors determine a plane section,
S(u, v)=[w=Au+pv), where A, g are real parameters. Let S,(% v) be a section defined
by two tangent vectors # and » at z in D. It is called real if I'm[u, v]=0 at 2 and analytic
if v=Au for some AEC. The ordinary angle € between two vectors # and v at z&D is

given by

2.2) cos8=|{u, v}11/ Hull ol

Besides the ordinary angle we use the notion of anlytic angle. It is given by
(2.3) cos F=|[u, v}1 / Wull Hoi, 0<F<a/2

We observe that (1°) > F and the equality holds if and. only if the section S.(u, v) is
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seal and (2°) F=0 if and only if S,(u, v) is analytic. Since the metric M(D) is invariant,
all geometric quantities defined on (D, M) are invariant under biholomorphic mappings
of D.

We remark that the formulas from (2.1) to (2.3) may be used to define the corres-
ponding quantities in the euclidean measure if the metric tensor Tag is replaced by sz,
We now consider the hypersphere
H=[z: 12I1 <1}, |zI’=(3 2).
The Bergman metric of H is
M(H) . dsy(2)=m+1)(1-|z|?sin? £) (1 |2|?)21dz]% —
where f is the euclidean analytic angle between two vectors z and dz (see also [2] for
definition). Let ¢ and b be two points in H. The holomorphic automorphism of H which
maps b into the origin o is
@ 8 w=w(2) =q(z—b) I-b*2)"1r,
gq=Q0-"" rr—U-B7, 15I1<1
and [ is the nx# identity matrix and b* denotes the complex conjugate transpose of &
Under this mapping the point @ is mapped into the point
2.5) w(a)=A=q(a—b)(I—-b*a) ",
|AI?=(A, A)=(la—bl*-b*(P)/ |1—(a, D)I*
where b(P) is the B-area of the parallelogram P determined by @, b and the origin (sce [2]).
3. The laws of sines and cosines. For any pair of points ¢ and b in H there is a unique
shortest geodesic 7#(a &) connecting @ and b, and it is given by the image curve of the
straight line segrrfent connecling the origin with A4, the image of ¢ under (2.4), under
the inverse mapping z=z(w) of (2.4). Hence three points @, b and ¢ in H determine a
non-euclidean triangle A uniquely.
THEOREM 3.1. Let A be a non-euclidean triangle in (H, M) whose three (nowncuclidean

analytic) angles are F\, Fy and Fs. Let g, be the noreuclidean lengths of three sides of
A opposite to F, i=1, 2, 3. Then

G sin Fy _ sin F, - sin I:‘a
sinh—=24— sinh— 82 sinh—&3
n+1)7 (n+1)7 (n+1)?

Proof. First we consider a non-cuclidean triangle A of vertices a, b and the origin o.
Let F,, F; and F; be the angles of A at the vertices a, & and o0, respectively, and f, the
corresponding angles of F, in the euclidean mecasiire. By definition we have

cos fi=1(b—a, a)| / |a—bl|al
3B.2) cos fo==|(a—b, b)| / b la—b|
cos fo=1(a, &)1 / |allbl.
From Lemma 3.1 in [2] it can bz shown by a formal computation that
sin® Fy—= 71 a0 (1) / Lai* e - b12- -0 (P))
(3.3) sin® Fo=(1—101%)(P; / 101*(la—b1* =02 (1))
sin® Fy=b*(P) / |al*|41*,
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where b(P) denotes the B-area of the parallelogram P determined by ¢, & and o. From
Lemma 4.1 in [2] we have .

(3.4 sinh? — &5 =412/ (1— 1A%,
n+1D1I

A—lal®A—151%

where A is given in (2.5). Since 1—-|A4|*= =z, DI’ , we obtain

(3.5) sinh? —&5 = (|g—8?| —b*(P)) / (1—|a]®) (1— |bI?).
(n+1)7 :

In particular,

sinh? —&1—— =iz / (1—1b%)
(n+1)7

(3.6) sinh? — 82 _ —|q|2/ (1—la|?).
(n+1)*
The theorem follows from (3.3), (3.5) and (3.6) if one of the vertices, say ¢, is the
origin. If ¢ is not the origin, the mapping
w=w(z)=q(z—c)(I—c*2)r},

3.7 gq=1—cc*)"Y, rYr=U—c*c)7, jcl<1,
maps ¢ into the origin. Let A and B be the respective images of ¢ and & under this
mapping. Since g,=g (o, B) =g (b, ¢), g.=g(0, A)=g(a, ), g:=g(A, B)=g(a,b) and the angles
are invariant, the theorem now. follows. Here g(a, b) denotes the non-euclidean length of
the shortest geodesic joining a and b.

THEOREM 3.2. Let A be a non-euclidean iriangle in (H, M) with the same notations
as in Theorem 3.1. Then

@E.7D cosh ——g-“‘—,—zcosh ———g‘—T— cosh ___gz_l_
(n+1)7 (rn+1)7 (n+1)7
—sinh —&L_— sinh — &2 cos F,
(n+1)7 (n+1)7

if and only if Fs=O,, where Oy is the corresponding ordinary angle of F.

Proof. In view of the proof of Theorem 3.1 it suffices to prove the theorem for the
case where one of three vertices @, b and ¢, say ¢, is the origin ¢. From.(3.4) we obtain

3.8) cosh — 8 =|1—(a, B)| / (L la1DFA— b)),
(n+1)7

1 1
In particular,  cosh—E&—=1/(1~15I19)7, cosh —82 _=1/(1—la|®)™
. (r+1)? (m+1)7
From (3.3) we also have cos Fy=|{(q, 6){/ |lal1b]. It can be easily checked that (3.7)
holds if and only if Im (a, b)=0 or F,=8; at the origin.
In particuar, if F;==90° in Theorem 3.2 we have the following stronger form of the

non-euclidean Pythagorean theorem :
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THEOREM 3.3. Let A be a nor-euclidean triangle in (H, M) with the same notations as
in Theovem 3.1, Then

8 —cosh —&L —=cosh S B
(n+1)7 (n+1)7 (n+1)%
holds if and only if F,=90°. (Compare with Theorem 4.2 in [2]).

Since the metric M(H) is invariant the above theorems hold for any domain which is
biholomorphically equivalent to the hypersphere, in particular, for any bounded domain
furnished with the complete Bergman metric with constant sectional curvature. The second
part. follows from the result due to K. H. Look [6] which states that any bounded domain
D furnished with the complete Bergman metric with constand sectional curvature is
biholomorphically equivalent to the hypersphere.

4. Perpendiculars in the Space (H, M). As was pointed out in [2] the following
statement is not true in general : Through a point in (I, M) not lying on a given gebdesic
vx there exists at least one geodesic intersecting Y« at the right analytic angle. It may
be shewn as follows: Since the geodesic Yun(a, b) joining two points ¢ and & in (H, M)
is the. image curve of the straight line 04, where A4 is given in (2.5), under the inverse
mapping

cosh

1) 2=2(w) =((1— b1 Fwr+8) / (1— (L — [b|?)Zwrb*)
of \(2. 4), the parametric equation of Y#(a, &) is given by

4.2) 2=(Pt+b) / (1+(P, b)), 0LtL],

where

4.3 P=(p!y - p)=(@—b) [ —-b*a)™!

A formal computation shows that h

4. 4) pP=a(1-1b1%) / (1—(a, b)) b’

and hence, 2/ / z2=qa’ / ¢’ for all ¢, 0<Z¢L1, if §//br=a’/a* for j+p. From this we obtain

LEMMA 4.1. Let a and b bd two points in H which determine a plane section S(a, b).
If S(a, b) is anaytic then the geodesic Yu(a, b) lies completely on the section S(a, b).

The following theorem follows immediately from Lemma 4. 1.

THEOREM L 1. Through a point in H not lying on a given geodesic Yu there may not
exist a geodesic which intersects Yu at the right analytic angle.

Further we have

THEOREM 4.2, Through a point ¢ in H not lying on a given geodesic Yu there exists a
geodesic which intersects Yu at the right analytic engle if and only if there are two distinct
points a and b on Yy such that the the two tangent vectors at ¢ along vu(a, b) and Yu (b, ¢)
form a real section at c. :
~ Proof. Frist we take ¢ to be the origin 0 and 75 to be any geodesic which does not
pass through the origin. Let @, & be two distinct points on v4. The equation of vy is then
given by (4. 2) with a real parameter £. A straightforward computution yields
.1 dz / dt=PI—b*b) / (1+ Pb*t)?
and
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(4.6) [dz / dt, 2l=(m+1)(dz/dt, 2) / (1—|z|52
We lock for the real solution ¢ of the equation :

4. 7) ) (dz/ dt, 2)=0

or (PI—b*0), Pt+b)=0

From 1~ bb*>0, we have I—b*b>0 (see p. 33, [4]). Hence P(I—b%bh)P*=(P— Pb*b)P*
=|P{?— | Pb*{2>0, and the solution of (4.7) is given by
t=—Pb*(1—161%) / (1 PIZ— | PH*)3).

The solution ¢ is real if and only if Im (P, b)=0. A formal computation shews that
Im(P, b)=Im(a, b)(1—15{2). Hence there exists a geodesic thr&ugh the origin o which
intersects 7o at the right analytic angle if and only if Imla, 8}=Im(a, b)=0. If ¢ is not
the origin, applying the mapping (3.7) in H which maps ¢ into the origin we can reduce
to the above case.

5. Examples. In this section we exhibit domains D in which the theorems in §3 or
similar theorems fail to be true in (D, M). Such domains arise among the class of domains
which are not biholomorphically equivalent to the hypersphere H. This class includes
simple domains such as the polydisc P={z: |21 <1, j=1, 2, ------ » 7} and the cldssical Cartan
domain of type I: R=[Z: I-ZZ*>(], where Z is an nxm matrix of complex elements
(n>m>2), Z* its conjugate transpose and I the identity matrix of order »n P is a
reducible symmetric domain while R is an irreducible symmetric domain. It is known that

M®P): dsy(D) Tald?1*=2 3, (1— | #1%) I dz|
and
M®B: dsi(Z)zag(l~ZZ*)“dZ(I—Z*Z)"’dZ*) (see [3] or [7]),
where ¢ denotes the trace of the matrix. Furthermore, if ¢ and b are two points on P then
G.1)  aan)=27H3 long—*—,'agi,'—
where Q=W—a) / 1 —a b)), and

5.2) ge(4, By=(252 )" [21 g1t ]

for any two points A and B in R, where A, are the posmve square roots of the charac-
teristic roots of the matrix
G.3) (B—A)(I—A*B) Y(B*—A*)(I—AB*)™!
and 1>24,2-24,20(3]. '
Example 1. The bicylinder B=[z: |#I<], a=1, 2] in the space. C* and the points

(2 ,-~—), b-—( )and 0=(0, 0) in B. At the origin we have Tew=2 far

a=1, 2. Hence angles in both the euclidean measure and non-euclidean measure comcxde
at the origin. Let Fy, F,, and F, denote the non-euclidean analytic angles of the triangle
abo at a, b and o, respectivly. Then cos Fy=cosf,=|(a b)|/ la}]b]=0. Since the
holomorphic automorphism.
5.4 w=("—a) / (1—a2), a=1, 2.
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_of B maps ¢, b and o into w(a)=o0, w(b) and w(o)=—a, tespectively, cos Fy=|(w(b),
w(o))| / 1w(®) | 1w(o)| =61/ (8762)7. Similarly, cos F,=71/ (8762)%. Further, form (5. 1)

we have gs(a, b)=(log? 2 +log? 3)"7, gs(a, 0) =gs{o, b) :2_“3' (log? 2 +log? 3)%. A numerical
computation now shows that Theorems 3.1-3.3 fail to be true in this case.
Example 2. The classical Cartan domain R of type I for n=m=2 and the points

1 1

5 0 -5 0
A= o BE 1
0 Y

in R Let F,, F, and F; denote the non-cuclidean analytic angles of the triangle ABo at
A, B and o, respectively. From the metric M(R) we sce that

(5.5) cos Fy=cos f;=|0(AB*¥)| / 6 (AA*) "!NBB*)“2
at the origin o and, hence, cos Fy==0. The holomorphic automorphism
5.6 W=Q(Z—-A)(I-A*Z)"'R™, [-AA*=@Q@*Q)"'=(RR*)"" [3]
of R maps A, B and ¢ into W(A)=0, W(B) and W{o)=—QAR.
. 2/\/3 0
It is easy to see that Q=R= | and hence,
0 3/W2)
1 5
W(o)=— and W(B):=
0o -+ 0 L
3 5

A formal computation shows thui cos F,=61/ (876")1r Similarly, cos F,=71/ (8/62)7
Further, from (6.2) and (5.3) we obtain that ge (4, B):2'7(10g32+10g 3)7, gr (A, 0)

1
=(log?2+log? 3)7=ge (0, B). As Iefore this shows that the theorems in §3 are not true

in this case

It would be of interest to investigate whether or not the theorems in §3 or similar theorems
should hold in a symmectric domain which is not a biholomorphic image of the hypersphere
when it is furnished with a suitable metric.
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