ON A SUBGROUP OF THE MODULAR GROUP # BY JAIHAN YOON **1.** Introduction. The set of all matrices of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where ad = bc = 1, ab = 1, bb = 1, ab 1and d are integers, is a group under the matrix multiplication, which is called the modular group and denoted by Γ . It is the purpose of this note to show that the index of the subgroup $\Gamma_{\theta n}(\S 3)$ of the group Γ is 6n and to find the fundamental region of Γ_{6n} (§ 4). ## 2. Some Lemmas LEMMA 1. Let Γ_6 be the set of all matrices $\begin{pmatrix} 1+2m_1 & 2m_2 \\ 2m_2 & 1+2m_2 \end{pmatrix}$. Then, Γ_6 is a normal subgroup of Γ and its index in Γ is 6. **Proof.** A simple calculation shows that Γ_6 is a normal subgroup of Γ . In the course of the calculation we obtain the following equalities which will be used later. where (2.2) $$M_1 = m_1 + p_1 + 2m_1p_1 + 2m_2p_3,$$ $$M_2 = m_2 + p_2 + 2m_1p_2 + 2m_2p_4,$$ $$M_3 = m_3 + p_3 + 2m_3p_1 + 2m_4p_3,$$ and $$M_4 = m_4 + p_4 + 2m_4p_4 + 2m_3p_2.$$ To prove that the index of Γ_6 in Γ is 6, let A_i ($i=1,2,\dots,5$) be the subsets of Γ defined as follows: (2.3) $$A_{1} = \left\{ \begin{pmatrix} 1 + 2m_{1} & 2m_{2} \\ 1 + 2m_{3} & 1 + 2m_{4} \end{pmatrix} \right\},$$ $$A_{2} = \left\{ \begin{pmatrix} 1 + 2m_{1} & 1 + 2m_{2} \\ 2m_{3} & 1 + 2m_{4} \end{pmatrix} \right\}, \quad A_{3} = \left\{ \begin{pmatrix} 2m_{1} & 1 + 2m_{2} \\ 1 + 2m_{3} & 2m_{4} \end{pmatrix} \right\},$$ $$A_{4} = \left\{ \begin{pmatrix} 2m_{1} & 1 + 2m_{2} \\ 1 + 2m_{3} & 1 + 2m_{4} \end{pmatrix} \right\}, \quad A_{5} = \left\{ \begin{pmatrix} 1 + 2m_{1} & 1 + 2m_{2} \\ 1 + 2m_{3} & 2m_{4} \end{pmatrix} \right\}.$$ Then, Γ is the disjoint union of Γ_6 and A_i ; that is $$\Gamma = \Gamma_6 \cup A_1 \cup A_2 \cup \cdots \cup A_5$$ and (2.5) $$A_{1} = \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix} \Gamma_{6}, \qquad A_{2} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \Gamma_{6}$$ $$A_{3} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Gamma_{6}, \qquad A_{4} = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \Gamma_{6},$$ $$A_{5} = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \Gamma_{6}$$ Vol. 4, No. 1, 1967. 10. Thus Lemma 1 is proved. LEMMA 2. Let $$Z = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$$ and $Q = \left\{ \begin{pmatrix} 1 + m_1 & 2m_2 \\ 2m_3 & 1 + 4m_4 \end{pmatrix} \right\}$. Then, Γ_6/Z is isomorphic to the group Q, which is the the free group generated by $$S = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$ and $T = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. **Proof.** That Q is a free group generated by S and T is shown in [3]. Accordingly, we need only to prove that Γ_0/Z is isomorphic to Q. The element L of Γ_6 is of the form $$\binom{1+2m_1}{2m_3} \quad \frac{2m_2}{1+2m_4}$$ where $m_1 + m_4 = 2(m_2 m_3 - m_1 m_4)$, and hence m_1 , m_2 are odd or even simultaneously. Making use of this fact, we define below a map $f: \Gamma_6 \rightarrow Q$ which is actually a homomorphism. If m_1 and m_4 are even, we have $2m_1=4m_1'$, $2m_4=4m_4'$ for some integers m_1' and m_4' . In this case, the image of L and -L under f is defined by $$f(L) = f(-L) = \begin{pmatrix} 1 + 4m_1' & 2m_2 \\ 2m_3 & 1 + 4m_4' \end{pmatrix}.$$ In case of m_1 and m_2 are odd, we define $$f(L) = f(-L) = \begin{pmatrix} 1 + 4(1 - m_1') & 2m_2 \\ 2m_3 & 1 + 4(1 - m_4') \end{pmatrix},$$ where m_1' and m_4' subject to the equality $$-(1+2m_i)=1+4(1-m_i')$$ (i=1,4). It is clear that f is a well-defined map of Γ_6 onto Q. To show that f preserves the multiplication, let $$L_1 = \begin{pmatrix} 1 + 2m_1 & 2m_2 \\ 2m_3 & 1 + 2m_4 \end{pmatrix}$$, and $L_2 = \begin{pmatrix} 1 + 2p_1 & 2p_2 \\ 2p_2 & 1 + 2p_4 \end{pmatrix}$. Cases should be divided according as (i) both m_1 and p_1 are even, (ii) m_1 is even but p_1 is odd (iii) m_1 is odd but p_1 is even and (iv) both m_1 and p_1 are odd. Assume (i). Then, by (2,1), (2,2) and that m_i , p_i (i=1,4) are even or odd simultaneously, we have $$L_1L_2 = \begin{pmatrix} 1 + 2M_1 & 2M_2 \\ 2M_3 & 1 + 2M_4 \end{pmatrix}$$ where $$M_1 = m_1 + p_1 + 2m_1p_1 + 2m_1p_3 = 2M_1',$$ $M_2 = m_2 + p_2 + 2m_1p_2 + 2m_2p_4,$ $M_3 = m_3 + p_3 + 2m_3p_1 + 2m_4p_3$ $M_4 = m_4 + p_4 + 2m_4p_4 + 2m_5p_2 = 2M_4'$ and for some integers M_{1}' and M_{4}' . ----- Hence, by the definition of f, $$f(L_1L_2) = \begin{pmatrix} 1 + 4M_1' & 2M_2 \\ 2M_3 & 1 + 4M_4' \end{pmatrix}.$$ On the other hand, a similar calculation gives $$f(L_1) \cdot f(L_2) = \begin{pmatrix} 1 + 4M_1' & 2M_2 \\ 2M_3 & 1 + 4M_4' \end{pmatrix},$$ showing $$f(L_1L_2) = f(L_1) \cdot f(L_2).$$ Proof for the remaining case are omitted because they parallels that of (i). Thus f is a homomorphism of Γ_6 onto Q, and it only remains to show that the kernel of f is Z. This, however, is immediate from the very definition of f. ## 3. The Main Theorems. DEFINITION. The group generated by the elements of Γ_6 of the form $$S_{2n} = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 - 4n & 2n \\ -2 & 1 \end{pmatrix}$$ and $$U_r = \begin{pmatrix} 4r+1 & -8r^2 \\ 2 & -(4r-1) \end{pmatrix}$$ $(r=1, 2, \dots, n-1)$ will be denoted Γ_{6n} . THEORFM 1. The index of Γ_{6n} in Γ_{6} is n. Proof. The matrices given in the above definition can be written as follows: $$S_{2n} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}^{n} = S^{n}, \quad U = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = S^{n}T^{-1},$$ $$U_{r} = \begin{pmatrix} 1 & 2r \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2r \\ 0 & 1 \end{pmatrix} = S^{r}TS^{-r}.$$ Hence the group Γ_{6n} is generated by S^n , U and S^rTS^{-r} $(r=1, 2, \dots, n-1)$. Let X be any element of Γ_6 . Since Γ_6/Z is the free group generated by S and T, X can be expressed as $$X=S^{m_1}T^{n_1}S^{m_2}T^{n_2}\cdots S^{m_r}T^{n_r}$$ where the integers m_1, n_1, \dots, n_r are all not zero possibly except for m_1 or n_r . Assume all m_1, n_1, \dots, n_r are positive. If $m_1 \ge n$, we have $m_1 = nr_1 + q_1$, $0 \le q_1 < n$ and $$\begin{split} S^{m_1}T^{n_1}S^{m_2} &= S^{n_r_1+q_1}T^{n_1}S^{-q_1}S^{m_2+q_1} \\ &= (S_{2n})^{r_1}(S^{q_1}T^{n_1}S^{-q_1})S^{m_2+q_1} \\ &= (S_{2n})^{r_1}(U_{q_1})^{n_1}S^{m_1+q_1}. \end{split}$$ If $0 < m_1 < n$, $S^{m_1}T^{n_2}S^{m_2}$ can be written as follows: $$S^{m_1}T^{n_1}S^{m_2} = S^{m_1}T^{n_1}S^{-m_1}S^{m_2+m_1}$$ = $(U_m)^{n_1}S^{m_2+m_1}$ Now, X reduces to $$X = (S_{2n})^{r_1} (U_{q_1})^{n_1} S^{m_2 + q_2} T^{n_2} S^{m_3} \cdots \cdots$$ $$X = (U_{m_i})^{n_1} S^{m_1 + m_1} T^{n_2} S^{m_3} \cdots \cdots$$ or according as $m_1 \ge n$ or $m_1 < n$ respectively. Vol. 4. No. 1, 1967. 10. A successive application of such a method to X_1 it reduces to $$X = Y \cdot S^{q_r}$$, $Y \in \Gamma_{g_{n_r}} \quad 0 \le q_r < n$ That is, $X \in \Gamma_{0n} S^i$ for some $i (0 \le i \le n-1)$. A slight modification and the equality $T^{n_i}S^{m_i}=(U^{-1})^{n_i}S^{nm_i+m_i}$ also shows that, for any integers m_1, n_1, \dots, n_n the last statement remains true. Thus we have proved that the index of Γ_{6n} in Γ_6 is n. An immediate consquence of Theorem 1 is that the index of Γ_{e_n} in Γ is 6n, and (3.1) $\Gamma = \Gamma_{e_n} \cup \Gamma_{e_n} S \cup \Gamma_{e_n} S_{e_n} \cup \cdots \cup \Gamma_{e_n} S^{k-1}.$ THEOREM 2. Matrices $T, U_1, U_2, \dots, U_{n-1}$, and S_{2n} generate a free group. **Proof.** If the group is not free, there is a non-trivial word G such that $$G = T^{m_1^r} U_1^{m_2^r} \cdots S_{2n-n+1}^{m_{n+1}^1} \cdots T^{m_1^1} U_{2n-1}^{m_2^1} \cdots S_{2n-n+1}^{m_{n+1}^1} = E_*$$ The word G can be written as $$G = T^{\mathbf{m}_{1}^{r}}(ST^{\mathbf{m}_{2}^{r}}S^{-1})(S^{2}T^{\mathbf{m}_{3}^{r}}S^{-2})\cdots\cdots(S^{n-1}T^{\mathbf{m}_{r}^{r}}S^{-n+1})$$ $$S^{n \cdot \mathbf{m}_{3}^{r}+1}\cdots\cdots T^{\mathbf{m}_{1}^{1}}(ST^{\mathbf{m}_{2}^{1}}S^{-1})(S^{2}T^{\mathbf{m}_{3}^{1}}S^{-2})$$ $$\cdots\cdots(S^{n-1}T^{\mathbf{m}_{3}^{1}}S^{-n+1})S^{n+\mathbf{m}_{n+1}^{1}}$$ and it reduces to $$G = T^{m_1}S^{m_2}\cdots T^{m_1}S^{m_1}$$ The non-triviality leads to a contradiction as in the proof of [2, Theorem 2]. ## 4. The Fundamental Region of Γ_{6n} . For the notation adopted in this section, the reader is refered to [2]. It is well known that the fundamental region of Γ is F_0 (fig. 1), and, in the light of (2.4) and (2.5), we can state that the fundamental region of Γ_0 is the union $$F_0 \cup F_1 \cup \cdots \cup F_5$$ (fig. 1) Fig. 1 - (i) It is clear that the map $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \in \Gamma_6$ sends F_1^+ and F_3^- onto F'_1^+ , F'_3^- respectively. - (ii) Clearly $\binom{1}{2} \binom{0}{1} \epsilon \Gamma_6$ maps F_5^- , F_4^+ onto F_6^- , F_7^+ respectively. - (iii) In view of (i) and (ii), the fundamental region F' of Γ_6 may be considered as the one indicated in Fig. 2. Fig. 2 (iv) By (3.1) and (iii), the fundamental region of $\Gamma_{6\pi}$ may be considered as the one indicated in Fig. 3. Fig. 3 ### References - B.Chang, S.A. Jennings and R.Ree, A certain pairs of matrices which generate free groups, Canadian Journal of Mathematics, 10(1958), 279-284 - 2. W. Magnus, Discrete Group, Lecture Note, New York University, 1952. - 3. I. N. Sanov, A property of a representation of a free group, Doklady Akad. Nauk (N.S.), 57 (1947), 657-659.