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Abstract

An exact expression of the titration {raction as a function of the potential is derived for the cases where
the coefficients of the both half reactions involved in the titration are homogeneous, It shows that the potential
is independent of the concentration of the reagents not only at the equivalence point but also at all titration
fractions. The sharpness of the end point detection by potentiometric method is shown to depend not only on
the difference of the normal potentials involved but also strongly on the number of electrons transferred in
each half reaction. The inflexion peint of the potentiometric titration curve is shown to be slightly off from the
equivalence point, including the cases where the number of electrons involved are equal. Completeness of the
reaction in the course of titration is analyzed, too, mostly in terms of equilibrium constant, thus most of the

results are applicable to any type of equilibrium in a single phase with particular refatiohnsip of coefficients
of chemical equation.

nt*?, Recently, a scheme of the numerical compu-

Introduction tations of the titration curve has been developed(®®.

Tt has been shown that the equivalence-point pote- The present work is concerned with derivation of
ntial of the oxidation-reduction titration is independent an exact equation of potentiometric titration curve and
of the concentration of the reagents only when the the analysis of the quantitativeness of titration reaction
half reactions involved are homogeneous in coefficie- for the cases where only the homogeneous half rean-
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tion equations are involved. Furhtermore, some pra-
ctical situations are analyzed on the basis of the
derived results.

Titration Curve Equation

Let the reductant titrand system, of formal potential
E®, be represented by Eq. (1),
titrant system, of formal potential E®, be represen-
ted by Eq. (2):

Ox; + me = Red,: B (1)
Ox; + me S Redy; E? 2
When V, ml of C; molar solution of Red, is titrated

and the oxidant

with C molar solution of Ox, up to V ml addition,
the equilibriom concentrations of the chemical species

involved in the titration reaction are given by

[Red,) =C,V,(1—a)/(V+ V) )]

[Oxl] =Cp Vna/(V‘l‘ Vo) (4)
CoVaa 2

(Red,) = Viv, '3 5)

(Oxs) =$V— gf;: 3"),:30 Vea (6)

respectively, where « designates the fraction of Red,
converted to Ox, and 2 and ¥ are the coefficients in
the titration reaction

2QOx; + yRed, == zRed, + »0x, @
Thus z#s=»#n, holds.

Since the potential of the two systems will have the
same value when the reaction has reached equitibrium,
at any selected point in the titration, the Nernst
expressions can be written s '

E=E"+(1/m¢)na/(1—a) (€))
E=E%+(1/np)In(¢—a)/a (¢))]
where ¢ designates the titration fraction
¢=(CV3)/(CoVixr)=(CVan){(CoVim) (10)
and ¢ is an abbreviation
¢=I/RT Qan

Multiplication of Eq. (8) by #»; and of Eq. (9)
by n, followed by addition gives a general equation
for the potential of the solution at any given titration
fraction:

- ML mEl S |
E ny+ny + m+n ¢

In(g—a)/(A—~a)

a2
Evidently, at the equivalence point, ¢=1, the pote-
(12), and it
is independent of the concentration of the reagents,

atial is given by the first term of Eq.

Solving for a, Eq. (8) gives

T 4

B B 573

exp(mo(E~ED)
T+ exp (mpCE—ED) s

Substitution of Eq. (13) into Eq. (9), followed by
solving for ¢ results in

a=

¢=a(l+expryp(E—ED)) (19
and
e ENPH10CE = ED +exp(n +1)p(E—E o)
1+expan,pl £—1)
(15)
respectively, where
p RlE°1+ﬂgE'3
Et‘i'_ #+ng (le)

Eq. (15) is a titration curve equation, and it shows
that the potentiai is independent of the concentration
of the reagents not only at the equivalence point but
throughout the titration. The titration error at a given
potential can be derived from Eq. {15) as

. expln+n)e(E—E.9)—1
¢=1= 1-+expn¢(E—LY an

Eq. (17) provides valuable criterion in planning the

potentiometric titration up to a preassipned potential,
since $—1 at a2 given value of E designates the
titration error. Changing variable by

E=FE_+¢ (18)
converts Eq. (17) into a convenient form {or practical

use;
.y _explm+a)pe—1
$-1= 1+ Aexpnype (19)
where
A=exp””'—:’m ¢dE, AE,=E—E, (20)
1

It is interesting to pote that, when E=E,
e=—1 AE /(3. 12),

¢="/1(1+exp{—npdE,)) @n
and when E=E%, e=mndE/(n,+m)
1
¢=2(1+ L+mmﬂ@AE:) (22)

Thus, the errors in assuming that E=F% at g='/,
end E=FE® at ¢=2 are determined by the magnitudes
of mdE, and n, 4K, respectively. It should te rem-
embered that Eqs. (8), (9), and hence (15) and (17)
are not applicable, when ¢ is close to zero, because
pure solutions of the reagents cannot be obtained due
to the redox properties of water. Furthermore, the
titration error at a preassigned value of potential is
determined by the magnitude A which depends strom
gly on both 4E, and 2, and x, (see Eq. (20) and
Fig. 1 ).

Although it is difficult to express the potential as
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fome— L 26)
[. T 1+ Aexp{—ngpe)
“ e Xl mg)
<l “, 5 1+ Aexpn,pe @n
and
v, 1
3t Go= 1+ Aexp(—mpe) 2
” Eq. (28} is particularly usefu] in determining the
required titration fraction to give a perceptible color
of the titrant, such as permanganate in the permang-
28} . . o .
anometry, when used in conjunction with Eq. (19).
Thus, if A is sufficiently large, which will be the
<A case in practical titrations, Eq. (28) may be approxi-
g mated by
20} ex €
e S (28")
1ok for smaller values of ¢; i.e., in the vicinity of the
equivalence point. The region where Eq. (28") applies
2k can not be seen in a straightforward way. However,
noting that
ol exprgpe=A
expmpe=An,/m (29)
o when e= E%—E,, and cosidering the subsequent
7 discussion of the rate of variation of the potential
NP , with titration fraction, such region is considered to
0 0.2 0.4 0.6 0.8 1.0 - .
4E°, Volt. be confined to the extreme vicinity of the equivalence
Figure 1

a function of ¢ in asimple form, Eqs.(15) and (19)
can be used in analyzing various features of the titra-
tion curve. A family of potential-titration fraction
curves can be obtained by calculating ¢ for a set of
& Fortunately, the curves are independent of the
concentration of the reagents involved but dependent
only on n,, #; and E,.

Quantitativeness of Reaction

The quantitativeness of the reaction can be expre-
ssed either by

Cr = qﬁ-—a (23)
or by

{f = 1—a 4
for the Red,, and

t=—5* (25)

for the Ox,.

In view of the Eqs. (13) and (15), those relative
reaction deficiencies can be writien es the functions
of &

point. Assuming that the perceptible concentration of
Ox; is in such region, the titration error in the visual
notion of its color can be estimated by rewriting Eq.
(19) as

Al 4-n)/na(e/e”) (mta)/n—1 30
1+A(n|+ﬂg)/ﬂs(5/¢") (?31/732)

where ¢ and ¢ designate the minimum perceptible

$-1=

concentration of Ox, and the concentration of the
titrant corrected for the volume factor at the equiv.
alence-point, respectively.

As an illustrative example, the titration errors
computed for the titration of ferrous iron with perm-
anganate from Eg. (30) taking ¢=1x10""M are '/, %
107 and '/»x 107" for the concentrations of the per-
manganate used 0. IN and 0.01N, respectively. The
error caused in subtracting the blank value at a given
tittation is represented by

g gha—1=

A +exprage 31)
expaype+Alexp(n,+ n )pe+1) + Alexpr e

In particalar, at the equivalence point, it is equal
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to 1/{(1+A), which can also be seen by computing
the reaction deficiency for ¢=1;

(32)
Eqs. (26), (27), and (28) are not related to the tite-
ation fraction directly but only through the potential.

1
Lo = Tret’ = Gt 1A

Consequently, they can serve as working equations
only if the relationship between ¢ and ¢ has been
tabulated.

Approximate expressions for the relative reaction
deficiencies in terms of the titration fraction can be
obtained from the equilibrium constant expression
=yt cery Tl
Substituting Eqs. (23) and {24) into Eq. (33) results in

g = (A—=CHCutn)/ny_
" (@—1+L,) 1/ ~

exp(mnpdEy) =

xp{—modE,) (34)

and

r (é_c"’)(_”l'i'ni)/ﬂl
= =gy P dED (35)

It is obvious that {,.0>8, Creg=8retrs and {,.0>C,
when ¢>>1, ¢=1, and $<{1, respectively* Therefore,

Eqgs. (34) and {35) can be approximated by

1 ’
= £ 1 (M4
& (95""1)!3:/?32- A___u.;:n: o $2> G4

and
e prLtned/ny ,
L SO=gy i/n 1 AR for ¢$2>1 (35")
respectively, as long as |¢—1|2»0,.q is satisfied. In
E=E° (¢='/)
1
[ =S AT
and when E=E% (¢=2)
1
e A(ul‘"ne)/ﬂ’
The approximate values of ¢, for ¢>>1 and §, for
¢>>1 are conveniently evaluated by means of the foll-

particular, when

owing equation derived from Eqs. (23) and (24):

L=¢—1+¢," (36)
In the vicinity of the equivalence point, where het
approximate equations do not apply, Eqs. (34) and
(35) can be used for approximation. Thus, changing
variable by

lp—1l=f%
Eq. (34), for example, becomes

FHDm/m%D L=(0-()/A s L ()

Or
S

@D

= G—‘:'IIT{ for ¢>>1 (38")

! XBLREE

When A is sufficiently large, unless extremely small
values of ¢—1 is of interest, £ is normally very large
so that Eq. (38") can be approximated by
S=lg—-1D AT =P/my (39
which allows estimation of ¢ for a given value of ¢
by using Eq. (37). Similar method can be used in
approximating {,” in the region where ¢<{1.

In particnlar, when =1, Cr=(¢—1)=1/(A,8|/“'“""}

and c’:=1_¢=1/‘4;‘2/(n1+n2).
The value of f being estimated, the corresponding
value of ¢ can be obtained by the following equation

derived from Eq. (12):
6= & ———dIn( f+1)

— mtn, @
{+ for ¢>>1 and — for ¢<1) (40)

The rate of variation of th relative reaction deficie-

ncies with the titration fraction can be estimated by
the following equation derived from Eq. (33):

as, . . m(1—-%,)¢,

4 mdlAn(6—1+%,) 4D
and

4,  (m+u—m(p—L,01¢," (42)

ds = ml,Am(—¢+(¢
Egs. (23) and (24) give an usefull relationship

between the two derivatives:

a5, _d¢’

Changing the reaction deficiencies in the right-hand
sides of Eqs. (40) and (41) results in

AT, m=tN(A—¢+L)

7 R P R 4 “ry
and

dCr _ (¢_1+Cr)(ﬂ!+”ICr) »

dp = gl e G148 @)
respectively., In particular, when ¢=1,

dt, 7 _ »e

df,‘5 = — ﬂ]_;”’ (1 ':e(l’) (41 )
and

dc,’ ” 12 7

d¢ = ?l;""’ﬂg + ﬂ|+?¥3 c‘q (42 )

It is obvious that {,<{,; when ¢>1 and §,<{,s
when $<{1. Therefore, each of Eqs. (41), (42),
(41’), and (42"} can be used for an approxmation in
the region removed from the equivalence point. Those
will provide useful criteria in photometric and ampe-
rometric determination of end point when incorporated
with the valume factor. It should be noted that Eqs,
(32)—(41’") have nothing to do with the Nernst
expression but the equilibrium constant expression, and
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hence they are applicable to any kind of equilibrium
in a single phase. It may be pointed out that the

relative rate of variation -%- % would be more

useful for some practical work,

Potentiostatic Buffer Index and Sharpness
Index of Titration

It is most convenient mathematically to define the
measure of the potentiostatic bufler capacity, the
buffer index §,cto be a derivative

=.de_ _d
p=dp= (44

Differentiating Eq. (19) with respective to ¢ gives for
the index
=
¢ ((n+ny)expnags + Amexp{n +ndge+n,A) expnype
(1 +Aexpnge)®
(45)

The sharpness index » defined as the magnitude of slope

of the tittation curve is the inverse of 8:
)?:3
1+ Aexpn,pe)?
o ((n+n)expugpe+ Anexp(n +ny)pe +n,A) expayps
(46)
which is independent of concentration, since ¢ depends
on ¢ only (se¢ Eq. (19)).

At the equivalence point,

the sharpness index is

given by

__1+A4
(il e v én
Therefore, it is necessary to have A greater than
(2y+ng) x10° in order to have 44 less than 107 for
about 100mv e,

The sharpness of potentiometric end point depends
strongly hoth A and 7, and 7, as Eq. (46) indicates.
Thus, the minimum value of 4E, for assuring reasor
nable accuracy of a redox titration depends strongly on
n, and 7. For example, the sharpness index of ceri-
um ([)-iron (#) tiiration is 1.2x10" (A4=9.25%
10%), whereas that for permanganate-iron () is 2%
10° (A=4.68x10"), while 4E, is 1.06 and 0.83v,
respectively.

In mest problems, another expression of » derived
in the following iz more useful than Eq. (46). Thus,
differentiating Eq. (12), after changing variables,
with respect o ¢ results in

- 1 r1 4o, 1 (1
- Gntme L Uy dg Ti—prg U
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dl,’

—a'—¢— ] for <1 48

and
_ I r_ 1 /. dg,
TS Gnrae L 914G, Cds D

_l_ J{r

~i T for o>1 (49>

Eliminating—(%- using Eqgs. (41) and (42) gives
1

_1
= Wl A mQA—FTC, 58 (50>
and
=1 1 (51
By gl Al g—153,) )
Further meodification can be made by using Eq. (37>
as
_1. f ,
=% T=D Gtk [T DA (0
and
_1, Sf p
7=y DG AT 1)

For the values of ¢ sufficiently removed from unity,
so that [¢—11>»T can be assumed, those equations
may be approximated by

. .1.. 1 1
e el

and
Ll 2 .
S D 1

It can be shown readily from Egs. (50) and (51) that
the potential vs. titration fraction plot is not symmetric
about the equivalence point.

Inflexion Point vs. Equivalence Point

The theorem of defferentials of inverse function

applied to Eq. (19) gives
d’e _ (1+Aexpmee)®
d¢t Yexp2n,pe

+n)pe+2n's+ 2mna—n}). Aexp(ni+ns)
pe+ (a4 n)lexprype—nt A expayype+niA)/
{Ansexp(n,+n)pe+ (1,4 n)expnspe +m, A) 3
(52)
The inflexion point on the titration curve will occur
when the numerator of Eq. (52) equals zero. Evide-

« | n% Alexp(2n,

ntly, the latter is nonzero at the equivalence point,
including the cases when »,=#;. As long as the inle.
xion point in the vicinty of the equivalence point is
of interest, it will be sufficient to consider the small-
values of ¢ anly. For such cases, negiecting the third
term in the parenthesis of che numerator, the appro-
ximaie value of the potential at the inflexion point,
¢;, may be obtained by solving the following equation:
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Ante(2ny+ng)pe;+ (23+2mn, —n®)

PASTRLPRT +ﬂf==Aﬂf€"l‘”i (53)
Rearranging Eq. (53) gives

ﬂz

n% exp(a; +1,)pe;=1— "?ll?'!{_' (et +

O 12— nTyexpnape;+ nlexp(—n0¢;)] (53"

or

2 _Lom 1
ST Gt e M a, Yt e B

1421, — 1t :
[1 _Wmmn_% e-...,.;]

{63”)
Since the second and third terms of the argument
of logarithmic expression will be normally much
smaller than unity, Eq. (563”) can be apporximated
by
NPV . SO POV - IR S—.
(1 +atgdy ny  Andi(m+n)p
(2072 +2n:m,—2* Dexprape; +n* exp(—rhgpe:))
(64}
Taking the first term of Eg. (64) as the zeroth order
approximation, =; can be successively approximated,

The first order approximation thus obtained is

%40 o 3ns—m (20 /n *a)
S R lchg—-}‘72 At (53,/1z) 30y 0y
(649

In particular, when 2#,=#,, the first term varnishes,
indicating that ¢; is extremely small if A is sufficiently

large. Thus, the exponential terms in Eq. (54) can

4 KBLFAL

be approximated by the power expansion up to linear
term, which leads the equation to

. 2
HSTA—Dp 5

Therefore, in the symmetric cases, the deviation of the
inflexion point from the equivalence point is negligibly
small as fong as A is sufficiently large.

For the cases where 7,52, substituting the first
term of Eq. (54) into Eq. (19),
be estimated as

such deviation can

1= wh/nt—1
1+ AGu/n2) Cui/ny + 1)

which will be of the order of 1/4. Therefore, theor-
esically, the inflexion point of the potential curve can

(56)

be considered to coincide with the equivalence point
within experimental error, if A is greater than 10°
However, in mannual potentiometric titration, graph-
ical determination of the inflexion point does mnot
necessarily give the true one. The error inherent to
such procedure shall be analyzed elsewhere.
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