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Abstract

The statistical mechanical basis of the significant structure theory was compared and discussed with

the improved Onno’s approximation in the cell theory.

So far, the significant structure theory of liquid¢" has
been the most widely applied of the various theories of
liquids®, It yields excellent results®* for the predic-
tion of thermodynamic, transport, sucface, and diele-
ctric properties of various liquids ranging from simple
monoatomic liquids to complicated liquid mixtures.
Among the advantages of the significant structure
theory are its mathematical simplicity and its wide
application to the liquid state. One of the defects of
this theory is that it has not been derived from an
exact partition function by any mathematically well-

defined approximations, but it is a result of intuition,
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On the contrary, the cell theory has been given 2
firm statistical mechanical foundation by Kirkwood(®,
It is instructive to find out the relation between
those two models. Here, the author will discuss the
analogy between the improved Onno’s approximation
®,@ in cell theory and the significant structure theory;
and also explain that the latter gives better agreement
with experiment than the former.

The partition function of the cell theory for an
assembly of N identical monoatomic
randomly distributed over L lattice cells subject to the
conditions of N<L is given by

molecules

Sfe-r= N-'(L )] ]3
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exp (—yNzg (0)/28TILVAY 16))

Where y=—LN- is the average function of occupied

3
m 7
nearest neighbor cells, 3-‘=(~2’—2§’1—1—) , Z 1is the

coordination number, ¢(0) is the pair potential energy
of 4 molecule at a distance equal to the equilibrium
distance between molecules, and the free volume, Vy
is defined as

Vi f “”exp[—yz—@}?ﬁ&]alw’dr @)

Here 7 is the distance from the poteatizl minimum
in the cell to a point 7 in the cell, and ¢(r) is the
average pair potential energy aty.

Following the Ree, Ree and Eyring’s approximation
® for free volume (improved Onno's approximation),
we can express Vs as follows:

Vi=(V,g)’(Vg)*-? &)

Where the factor g is the Eyring, s degeneracy fact-
or, and V, is the free volume at y=1 while Vg is the
free volume at y=0.

Substituting of Eq. (3) into Eq. (1) and rearranging
yields

for=(V,g exp(—24(e)/2kT))*™

L!
x(,l-’Vg)“"’" m (4)
The first parentheses in Eq. (4) represent the
classical solid partition function, while the second
parentheses contain the partition function of molecules

in an ideal gas occupying the average free volume vy,

N V.
Now, substituting y=-7-="" into Eq. (4), and

using the notation of f; for solid partition function,
and of f; for ideal gas partition function, and using
Stirling’s approximation we obtain
Nd.‘.’l;_ NY-Ys
Fe.r=(f1g) (fo)

vy N/¥s }
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According to the significant structure theory, the
partition function is given by

N_Vs

fo=Chid) <fg)”_-"f’_/ (n( TN ®

V. is
the molar volume of the solid at the melting point.

Here V is the molar voluine of the liquid,

The significant structure theory has several mathe-
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matical expressions to represent “solid like” partition
function. Originally, f, was represented by an Einstein
Oscillator® for ordinary liquid and by a Debye
Oscillator® for quantum liquid. Later, this model
was also represented by the Lennard-Jones and Dev-
onshire solid partition function to eliminate several
disadvantages™ of the original expressions.

The Eqgs. (5) and (7) are of the same form, and
only differ in the combinatorial factor. This difference
is due to the assumption made in the formulation of
the partition function. The significant structure theory
assumes that some molecules possess solid like and
some possess gas like degrees of freedom, and the com-
binatorial factor was intraduced for the indistinguish-
ability of gas like molecules. On the otherhand, in the
cell theory the combinatorial factor was introduced to
account for the random distribution of N particles in
L cells.

Henderson™ applied the f.., to hard sphere mole-
cules with good success, while Ree et al® obtained
good results by using improved Onno’s approximation
in the cell theory. .

From Eq. (6) and (7), we can easily see that the
calculated results for thermodynamic gquantities are
the same for both theories, but differ in volume
dependent properties as PV/NET or P because of
combinatorial factor. The significant structure theory
gives better results®™ for the calculation of PV/
NET and P.

It is very natural to think of the fact that £,, gives
the limiting value of an idesl gas as V goes to
infinity.
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