Daehan Hwahak Hwoejee Volume 9, Number 4, 1965 Printed in Republic of Korea.

高壓下의 水熱反應에 依한 CaO-SiO₂-H₂O 系 硬化體에 關한 基礎的 研究

漢陽大學校 工科大學 窯業工學科

李 喜 洗 (1965. **11.** 2 受理)

A Study on CaO-SiO₂-H₂O System Hydrates Produced

by Hydrothermal Reaction under High Pressure.

by

Hee Soo Lee

Department of Ceramic Engineering, College of Engineering, Hanyang University

(Received Nov. 2, 1965)

Abstract

It is a fundamental study for the hardened bodies of CaO-SiO₂-H₂O system to clear up various physical properties and structures of the products, using the Seosan quartz and Ca(OH)₂ (C. P. grade) as raw materials. Various samples were obtained by varying CaO/SiO₂ mole ratio (0.3~2.1) and hydrothermal conditions

(100~220°C and 2~14hr.) within the given limit.

It was found that tobermorite phase as hydrate is contained in the hardened bodies and that the development of crystal has a great influence on the strengths and other physical properties of hardened bodies.

序 論

CaO-SiO₂-H₂O 系 水和物은 시멘트의 凝結, 硬 化過程및 硬化完了後의 性質等에 미치는 影響이 크므로 이에 對한 研究가 古來로부터 이루어지 고 있었으나 이系의 複雜性으로 因하여 그間 研 究가 遲遲不振하고 있었으며, 近來 Bernal¹⁾, Kalousek²⁰等의 研究와 더부러 國際시멘트化學 會議에서의 이에 對한 많은 論文들³⁰이 發表된 後 부터 다시금 各國에서의 研究가 活潑히 再擡頭 되었다. 現今 이系의 水和物로서는 天然物과 合 成物을 合해서 約 17~18 種이 알려지고 있으나 就中 合成物의 種類는 매우 적으며 더욱이 合成 生成物 結晶의 甚한 微細性 및 低對稱性으로 因 하여 續物學的 同定이 困難하다. 이들 合成水化 物의 組成은 結晶水 및 CaO/SiO₂ mole 比(以下 C/S mole 比로 略記)에 따라 廣範圍에 걸쳐 銳敏 하게 變化되므로 ~種의 相일제라도 이에 對한 化 學式을 決定짓기는 매우 困難하다. 그間의 硏究 結果, 尚今 未確實視되고 있는 點은 水和反應速 度 및 平衡相間의 構造에 따른 强度 其他 物性 사이의 相互關係이며 就中 本硏究에서는 後者 를 擇하여 系統的으로 調査 檢討하였다. 本實驗 에서 試料作成上 變化因子로 擇한 것은 C/S mole 比와 水熱條件이며 操作上 特異視한 點은 直接 合成, 加壓成形 및 高壓下의 水熱養生法에 依하 였다는 點이다.

Vol. 9 (1965)

高壓下의 水熱反應에 依한 CaO-SiO2·H2O系 硬化體

原料 吳 成形體作成條件 選定

過 粉碎物과 市販 Ca(OH)2 試藥을 使用하였으 며 化學組成 및 物性은 Table I과 같다. 供試體 成形을 爲하여 共用될 成形用 添水率 및

原料로서는 高純度인 瑞山珪石의 200 mesh 通

Table [Chemical Composition of Raw Materials.

Item Raw mater.	True Sp. gr.	Specific surface area	S. K	Ig. loss	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	Total
Seosan Quartz	2.66	cm²/g 5- 030	35	0. 09 [%]	% 99.71	% 0. 024	% 0. 039	%	-%	% 99.98
Ca(OH) ₂	2.24	7, 800		24.42		-	-	75. 38	0.09	99.89

成形厭을 選定코자 Sudoh ⁴에 依한 C/S mole 比=1.0과 Erich⁵⁾에 依한 水熱條件으로서 8atm, 4hr.을 基準으로 定하였고, 成形體 形成은 ∮30×13 mm 의 圓柱形으로 하여 다음 Table Ⅱ와 같은 添水率, 成形壓의 同時變化에 따른 Fig. 1 과 같은 水熱後 壓縮强度 試驗結果로서 選定하 였다. 이때 最大値로서는 No. C-4 인 添水率 7% 와 成形壓 7,000 p.s.i. 를 適格條件으로 選定하 였다.

Table I Variation in Water Content and Molding Pressure for Hydrothermal Condition 8 atm and 4 hrs.

Sample No.	Water content	Molding press. (p. s. i.)	Sample No.	Water content	Molding press. (p. s. i.)
A-1	3%	1×10^{3}	c4	7%	7×10^{3}
A-2	"	3	c—5	"	9
A3	"	5	d—1	8	1
A—4	"	7	d—2		3
A—5	"	9	d3		5
B-1	5	1	d—4	"	7
B2		3	d5	"	9
В—3		5	e—1	9	1
B-4	"	7	e-2	"	3
B-5	"	9	e—3	"	5
C-1	7	1	e—4	"	7
C-2	"	3	e—5		9
С3		5			

實驗方法

1) 供試體 作成

所定의 C/S mole 比로 配合한 原料 混合物에 다 選定된 添水率 7%을 加한 均一 混和物을 所 定金屬型에 注加하여 選定된 成形壓 7000 p.s.i. 로서 成形한 後 一旦 完全 乾燥시키고 다음 autoclave 內에서 所定의 水熱養生을 하였다. 이때 水熱後 모든 操作은 autoclave 의 取扱法 및 K.S.®에 準하였다. 取出하여 所定操作을 마친 試料는 다시금 完全 乾燥하여 保管하였다가 適 宜 供試했다. 本實驗에서 擇한 C/S mole 반 및 水熱條件의 變化는 Fig. 2 와 같이 C/S mole 比 水熱溫度 및 水熱時間을 各 頂點으로 하는 三角 圖表의 範圍內에서 規則的으로 施行하였다. 이 에 對한 內譯을 Table 🛙 에 表示하였다.

枩

铢

Table	Ш	C/S	Mole	Ratio	and	Hydrothermal	
		Cone	ditions				

o 1 5 -	C/S mole	Hydrothermal condition					
Sample No.	ratio	Temp. (°C)	Corresponding press. (p. s. i)	Time (hr)			
A-1	2.1	100	14.7	2			
A-2	1.8	120	20	17			
A -3	1.5	140	53	"			
A	1.2	160	90	"			
A —5	0.9	180	146	"			
A6	0.6	200	225	11			
A-7	0.3	220	350	11			
B-1	1.8	100	14.7	4			
B2	1.5	120	29	11			
B-3	1.2	140	53	11			
B —4	0.9	160	90	*			
B —5	0.6	180	146	17			
B -6	0.3	200	225	11			
C-1	1.5	100	14.7	6			
C-2	1-2	120	29	"			
С—3	0.9	140	53	#			
C-4	0.6	160	90	17			
С5	0. 3	180	146	#			
D-1	1.2	100	14.7	8			
D-2	0.9	120	29	"			
D-3	0.6	140	53	"			
D-4	0.3	160	90	"			
E —1	0.9	100	14.7	10			
E2	0.6	120	29	"			
E3	0.3	140	53	"			
F-1	0.6	100	14.7	12			
F-2	0.3	120	29	"			
G-1	0.3	100	14.7	14			

2) 實驗種目

施行한 實驗 種目으로서는 强度(壓縮, 引張, 抗折), 겉보기比重, 遊離石灰分, 吸水率, 强熱減 量, 示差熱分析(D.T.A.), 熱天秤分析(T.B.A.) 및 X-線廻折分析을 擇하였다.

袺 果

選定된 成形用 添水率인 7%를 基準으로 하여 成形壓 變化에 따른 水熱養生 前後의 壓縮强度 實測値 變化 結果는 Fig. 3과 같다. 여기서 水熱 前 成形體의 强度는 成形壓 增加에 따라 比例的 으로 增大되지만 水熱을 畢한 것은 强度의 最大

Fig. 2 C/S mole ratio and hydrothermal conditions. T...Hydrothermal Time M...C/S Mole Ratio

P----Hydrothermal Temperature

Molding press at water content=7% (psi)

Fig. 3 Compressive strengths of hydrothermalized and non-hydrothermalized samples. —— Hydrothermalized samples. …… Non-hydrothermalized samples. Vol. 9 (1965)

限界値를 나타내고 있다. 이 結果로서 水熱養生 難易는 成形壓 增加에 따른 體內 密度에 支配된 다고 推想되며 이때 密度가 어느 限界 以上으로 커지던 水和反應速度를 遅延시키고 있음을 알 수 있다. 따라서 過度한 成形壓 增加는 不必要하다.

所定 水熱養生을 마친 水和供試體에 對한 各 實測値를 Table N에 綜合 表示하였다. 이들 實 · 潮 結果値로서 判明된 强弱 또는 大小關係를 比 較하여 各 試驗에서 各 平均値 以上으로 强 또 는 大인 값을 갖는 試料들의 分布 範圍(겉보기 比重 및 遊離石灰分에서는 平均値 以下의 小인 값을 갖는 試料들의 分布 範圍)를 包圍線으로 明 示한 前記 Fig. 2 와 같은 三角圖表를 Fig. 4, 5 및 6 에 表示한다.

A one it observed values.	Table	N	Observed	Values.
---------------------------	-------	---	----------	---------

Item		_]	_					
Sample No.		1	1	N I	V V	11	VI	VIII
	i kg/cm ²	kg/cm ²	kg/cm ²	kg/cm ²		%	/ %	(mg
A-1	2.315	39.5	7.77	5.24	2. 189	19.85	65.5	183
A-2	4, 196	88.44	15.7	4.66	2.087	21.02	47.35	172
A3	5. 971	113, 86	17,85	4.17	2.0 9 4	21.71	38.84	151
A-4	5.973	156.43	27.8	5, 45	2, 111	23.99	32.04	145
A-5	14. 21	184. 55	32.22	6.49	2, 105	24.57	17.60	138
A-6	14.26	362.23	39, 8	7.00	2, 072	26.07	4.80	107
A-7	11. 33	205. 57	38. 22	5. 32	2.049	26.59	0.22	71
в—1	5.07	50.43	8.7	5.34	2.084	20.52	47.05	171
B-2	7.23	86, 08	5. 2 5	5.24	2.087	21.25	48.35	156
В-3	9.07	125.83	16.07	5, 86	2.109	24.35	33. 18	144
B-4	11.69	159. 34	36.71	7.12	2.113	29.43	19.36	135
В — 5	11.22	268, 90	45.1	5.87	2.096	23.69	0.2	84
B6	15. 32	200-77	45.3	6. 57	2.073	27.51	0.5	64
C-1	6.44	62.51	9.85	4. 22	2.113	19.83	45. 27	171
C-2	6.574	76. 15	13. 27	6.09	2.202	21.09	33.86	161
C-3	12.92	164. 09	30.7	6.74	2.112	21.50	25. 79	149
C4	15. 57	236.26	40.3	7.77	2.098	23.46	0. 22	100
C5	14.89	163. 71	36.8	6.07	2.056	25.09	0.5	79
D-1	5. 574	46 . 83 [!]	7.7	5.64	2, 101	18. 52	35.07	153
D-2	8.86	90-28	10. 1	5.46	2.097	18.56	40-22	115
D-3	12.12	199.92	39. 9	6.84	2.086	22.04	20.50	106
D -4	16.83	233. 21	38.9	5.99	2.076	23.04	0.3	79
E-1	6.089	51.24	6.2	7.44	2.106	20.03	35, 81	129
E-2	6.83	78.28	12.28	5.86	2.104	20.02	33. 26	90
E-3	12.48	233. 65	42.25	5.89	2.085	25.93	4.38	68
F-1	5.80	67. 70	6.93	4.97	2.108	19.81	33. 11	113
F-2	9, 88	79.9	21. 22	5.97;	2.114	20.73	15.8	75
G1	6.635	62.62	9.55	5, 20	2, 129	20.21	31.08	68

Remark :

	Order ← —	Order ← → Order 28			
I : Compressive Strength	Strong	Weak			
I : Modulus of Rapture	Strong	Weak			
III: Tensile Strength	Strong	Weak			
🛿 : Vicker's Hardness	Max.	Min,			
V : Apparent Specific Gravity	Min,	Max.			
1 : Water Absorption	Max.	Min.			
W : Free Ca(OH) ₂ Quantity	Min,	Max.			
MI : Thermal Loss	Max,	Min.			

铢

Table 4의 各 實測値 結果로서 얻은 概要을 比較해 보면 다음과 같다.

	最强	또는 最大	最弱	또는 最小	類似値表	示試料 集結範圍	_	<u> </u>	Fig.	4, 5, 6
_	Sample No,	値	Sample No.	値	順 位* 範 國	値	平	均 値	包煙 範運	線內
壓縮强度	D4	16. 83kg/cm ²	A-1	2. 315kg/cm ²	16~25	6~7kg/cm ²	9.	48kg/cm ²	平均	直以上
抗折强度	A-6	362. 23kg/cm ²	A-1	39.5 kg/cm ²	$10 \sim 13$	約 160kg/cm ²	138-	87kg/cm ²	"	以上
引張强度	B-5	45.1 kg/cm ²	B - 2	5.25 kg/cm ²	4~8	39~40kg/cm ²	23.	66kg/cm ²	"	以上
Vicker硬度	C-4	7. 77kg/mm ²	A-3	4.17 kg/mm ²	14~16	5.86~ 5.87kg/mm ²	5.	87kg/mm	2 //	以上
겉보기比重	C-2	2. 2021	A7	2.049	17~25	約 2.11	2-	103	"	以下
吸水率	B4	29.43%	D-1	18.52%	16~26	20~21%	22.	51%	/ "	以上
遊離石灰	A-1	65.5 <i>%</i>	в—5	0.2%	1~3	0.2%	25.	36%	"	以下
强熱減量	A-1	183mg	B-6	64mg	7~10	約 150mg	120.	6mg	"	以上

* 順位는 上記 Remark 에 記載한 바와 같음.

上記 結果로서 알 수 있는 바와 같이 各種 强度 및 硬度에 對하여 比較的 큰 값을 나타내는 試 料들은 Fig. 4의 包圍線內 範圍에 屬하고 있으 며, 이들 範圍는 大體로 類似하였다. 이 범위에 屬할 수 있는 成分比와 水熱條件은 大略 다음과 같음을 알 수 있다. 즉 C/S mole 比 0.3~0.9, 木 熱時間 約 2~8 hr., 水熱溫度 140~220°C 이다. 따라서 同一 水熱時間에 對해서는 水熱溫度가 大體로 140°C 以上이고 C/S mole 比가 大略 0.9 以下인 것이 高强度, 高硬度로 되며, 水熱時間이 大略 10 hr. 以上으로 되면 强度 및 硬度는 低下 되고 있다. 結局 上記 範圍內의 同一 C/S mole 比에 對해서는 各 水熱 最高溫度가 얕으면 水熱 時間을 길게하고, 反對로 水熱 最高溫度가 높으

면 水熱時間을 짧게 하드라도 큰 强度, 큰 硬度 를 가지게 된다는 것을 알 수 있다.

결보가比重 實測値로서 알 수 있는 바와 같이 同一 各 水熱時間에 對하여 C/S mole 比가 大體 로 0.6 以下로 작고 水熱溫度가 140°C 以上으로 높은 溫度範圍의 것은 比重이 적으며 水熱時間 이 大略 10 hr. 以上으로 되는 것은 比重이 커 진다는 것을 알 수 있다.

吸水率 資測値로서 알 수 있는 바와 같이 同一 水熱時間에 對해 水熱溫度가 大略 140°C 以下로 작고, C/S mole 比가 1.5 以上으로 큰 것들의 吸 水率은 적어진다는 것을 알 수 있다.

遊離石灰分 實測値로서 알 수 있는 바와 같이 120°C 以上의 水熱溫度 全般에 걸쳐, 同一 各 水 熱時間에 對하여 C/S mole 比가 0.9 以下로 작은

Fig. 7 X-ray diffraction patterns.

医 喜 诛

大韓化學會誌

試料들은 遊離 Ca(OH)2의 含量이 적어짐을 알 수 있다.

强熱滅量 實測値로서 알 수 있는 바와 같이 同 - 木熱時間에 對하여 水熱溫度全般에 걸쳐, C/S mole 比가 0.6 以下로 작은 것들은 强熱滅量 이 적어진다는 것을 알 수 있고, 또한 모든 水 熱條件에 걸쳐서 C/S mole 比가 0.6 및 0.3 일 때 强熱減量이 比較的 커진다.

X-線 廻折分析

結果를 **同定**하기 爲해서 使用한 資料로서 A. S. T. M. card[®] 및 Soudoh 報告⁷⁷에 依하였다. 同定結果 本 實驗의 各 patterns에서 나타나

Fig. 8 Curves of thermal balance analysis.

는 peaks는 Ca(OH)₂, SiO₂ 및 tobermorite 相의 特徵 peak 였으며, Fig. 7 에서 强度比較 檢討에 有用한 部分만의 patterns 를 C/S mole 比別로 分 類 表示하였다.

各 patterns 에서 tobermorite 相의 特徵 peaks 中 A.S.T.M. Card 에서의 14Å, 11Å, 10Å, 9Å 等의 peaks 가 거의 現出 되지않고 있는 것 으로 보아, 全般的으로 結晶의 發達이 낮다고 推 想되며, 더우기 本實驗結果에서는 C-軸 發達이 잘 되지 않은 (h k o) 때의 peak 强度가 主로 銳 敏하게 變化되고 있다.

實驗全般에 걸쳐 tobermorite 相生成의 基本要 素는 (2 2 0), (4 2 3) 結晶面이며, 發達度의 判 定은 主로 (2 2 0)面의 peak 로서 이루워 진다.

이 相의 發達良否는 遊離 SiO2 量보다 遊離 Ca(OH); 量에 따라 甚한 影響을 받는다는 것을 알아 볼 수 있다. 即 Ca(OH)2의 4.96 Å(0 0 1)의 peak 가 낮을 수록 이 相의 3.07 Å(2-2-0)가 더욱 잘 發達되며 Ca(OH)2의 (0 0 1) peak 가 거의 나 타나지 않으면 이相의 (2 2 0) peak는 크고, broad 하게 發達되는 傾向을 보여준다. 이 點으로 서 tobermorite 相의 (2 2 0) peak 가 크고, broad 해지면 結晶 發達이 잘 된다는 것을 推定할 수 있 었다. 萬一 Ca(OH)2의 (001) peak의 强度比 를 判別키 困難할 때에는 3.11 Å (1 0 0) 및 2.62 Å(101)의 銳利한 peak 로서 代替判定할 수도 있 다. Tobermorite 相에서 發達된 結晶面은 上記 (220), (423) 以外에 (222), (400), (008) 等이 있으나, 이들의 peak는 Ca(OH)2 및 SiO2 의 特徵 peaks 와 diffuse 하기 쉽고, 强度도 낮 기 때문에 比較가 困難하다. 上記 點에 依據하 여 本結果에서 tobermorite 相의 發達順位를 大略 比較해 보면 다음과 같다.

C/S mole 比=0.3 系列:

C-5>D-4>B-6>A-7>E-3>F-2>G-1 C/S mole 比=0.6 系列: C-4>B-5>A+6>D-3>E-2>≈F-1 C/S mole 比=0.9 系列: A-5>B-4>C-3>D-2≈E-1 C/S mole 比=1.2 系列: B-3>≈C-2>A-4≈D-1

C/S mole 比=1.5 系列:

A-3≈B-2>C-1 C/S mole 比=1.8系列: A-2≈B-1

熱天秤分析

T.B.A. 結果를 同一 C/S mole 比, 同一 水熱 溫度 및 同→ 水熱時間 別로 Fig. 8 에 分類 表示 하였다.

曖昧한 曲線型이 있기는 하나 全 曲線型群을 2種으로 大別할 수 있다. 即 A-7 型과 같이 單 調로운 聲曲線型과 A-1 型과 같이 500℃ 前後 와 700~800℃ 附近에서 急變部를 이루는 變調로 운 曲線型이다. 前者에는 X-線廻折分析 및 後記 D.T.A. 結果로서 判定되는 比較的 tobermorite 相의 發達이 良好한 A--7, A--6, A--5, B--6, B-5, B-4, C-5, C-4, C-3, D-4, D-3, E-3等이 屬해 있고, 나머지는 後者 또는 曖昧 한 것들이다. 또한 前者는 Soudoh 報告 끼로서, 相의 發達이 良好할 때의 曲線型이라고 判斷된 다. 後者에서 500°C 前後때의 强熱 重量減少의 變化度는 700~800℃때 보다 더욱 基하며, 한 · 펌 X-線廼折分析으로서 確認되는 tobermorite 相 結晶 發達의 良否 關係와 對照해 보면 tobermorite 相의 發達이 보다 좋아질 수록 700~800°C 때의 變化度는 別差 없으나, 500℃ 前後매의 變化度 는 점점 緩和되고 있다. 一般으로 前者型 試料 들의 强熱重量 減少 全量은 後者型들의 것들 보 다 매우 적어지고 있다. 全般的으로 C/S mole 比가 적어질 수록 tobermorite 相의 發達이 좋아 지는 傾向을 나타내고 있다.

示差熱分析

同一 C/S mole 比 別로 分類한 D. T. A. 結果를 Fig. 9에 綜合 表示하였다.

本 結果의 同定 資料는 Scifax D.T.A. Data Index Card[®]였다. Fig. 9로서, 全般에 결친 peak의 分布 溫度 範圍는 530~560 T(-). 570 ~580 T(-) 및 810~860 T(±)의 三群으로 大 別된다.

Scifax Card 로서 前 兩者는 遊離 Ca(OH)₂의 遊離S iO₂의 各 特徵 peak 範圍임이 確認된다. 後 者인 810~860 T(±) 範圍는 本 CaO-SiO₂-H₂O 系 合成 水和物의 特徵 peak 範圍임을 Kalousek³⁰ Yoshii⁹⁰等에 依해서 알려져 있으며,本 X-線 廻 铁

本

大韓化學會誌

Fig. 9 Curves of differential thermal analysis.

折 分析 結果, 그 水和物은 tobermorite 相임을 推定할 수 있다.

더욱이 上記 X線 廻折 分析結果 및 T.B.A. 結果에서, 比較的 tobermorite 相의 結晶 發達이 良好하다고 推定된 試料들은, 이 範圍에 있어서 發熱 peak 를 나타내고 있다. 또한 이 發熱 peak 의 位置는 配合한 C/S mole 比가 增加할 수록 高 溫側으로 移行되고 있다. 即 C/S mole 比가 0.3 인 群은 820℃準位이고, 0.6 인 群은 840℃準 位, 0.9 인 群은 860℃準位에 있고, 1.2 인 群 에서는 880℃準位에 位置하고 있다. 한편 X-線 廻折에서 遊離 Ca(OH)2 및 SiO2의 特徵 peaks 의 强度比는 本 D.T.A. 結果에서 表示된 530~ 560 T(-) 및 570~580 T(-) 사이에 peaks 의 相互 關係와 大略 比例的이었다.

考察

出發物質의 粒度를 매우 곱게하고, 또한 autoclave 에 依한 促進養生을 했음에도 不拘하고, X-線廻折圖의 同定, D.T.A. 및 T.B.A. 結果等 에 依하면 未反應의 出發物質의 Ca(OH)₂, SiO₂ 2種成分이 比較的 많이 殘存하고 있었으며, 따 라서 이들은 硬化體構成에 있어서 骨材格으로 存 在한다고 推想된다. 合成된 水和物로서는 tobermorite 相의 生成이 確認되었으며, 이것 또한 全 般的으로 C-軸의 發達이 나빠서 主로 (h k o) 面이 比較的 큰 廻折强度를 나타내고 同時에 broad 한 peak 를 表示하고 있다. Takemoto ¹¹⁾도 autoclave 에 依한 硬化體內에는 一般으로 CaO- SiO2-H2O 系 水和物로서 gyrolite, xonotilite, hillebrandite 等은 잘 나타나지 않으며, tobermorite 相만이 主要構成水和物로서 存在한다고 달 하고 있다. 또한 Sudoh 하는 이 點에 對하여 ㅡ 般으로 tobermorite 相의 結晶發達이 나쁘거나 또 는 生成初期의 現象이라고 말하고 있으며, 이 原 因에 對하여 本人은 加壓成形으로 因하여 成形 體의 密度가 커저 水熱이 抑制 當하기 때문이라 고 推想했다. 이點은 本實驗에서 成形壓 增加에 따른 水熱硬化體의 壓縮强度測定値자이에 最大 限界點을 나타내고 있다는 結果로서도 確認된 다. 이러한 現象은 Sudoh ⁷⁾가 報告한 比較的 低溫度의 autoclave 養生에 依한 paste hardened body 에 對한 것과 加壓成形體에 對한 Kondow 의 未確定報告¹⁰와 同一한 結果를 나타내고 있 다.

水和硬化體의 各種强度, 硬度, 吸水率 및 遊離 石灰는 生成된 tobermorite 相의 發達度와 密接한 關係가 있음을 本實驗結果로서 確認하였다. 即 이 相의 結晶發達이 比較的 잘 되어 있는 硬化 體들의 各種强度, 硬度 및 吸水率은 커지지만 遊 離石灰量은 작아지고 있었다. 이러한 現象은 2~ 10 hr. 內의 同一 各水熱時間에 對하여 一般으 로 C/S mole 比가 0.9 以下로 작고 水熱溫度가 140°C 以上으로 높을 때 顯著해지고 있다. 겉보 기 比重과 强熱減量과는 比例的인 傾向을 나타 내고 있으며 各 水熱條件에 對하여 一般으로 C/S mole 比가 작을 때 이들의 結果値가 작아지고 있다. 한편 이들과 强度, 硬度等과 사이의 相互

關係는 認定하기가 어렵다.

D.T.A., T.B.A. 結果 및 X-線廻折結果사이 에는 서로 連關性있는 現象을 나타내고 있다. 即 tobermorite 相의 結晶發達이 잘 되여 있는 硬 化體의 D.T.A. 曲線에서 810~860℃範國에 나 타나는 强度가 큰 發熱 peak 의 位置는 高溫側 으로 移行되고 있으며, 한편 T.B.A. 曲線에서는 强熱重量減少가 完全히 없어지는 溫度로 될 때가 지의 溫度範圍에서 加熱溫度에 따르는 重量減少 의 變化率은 單調로히 減少하므로 平坦한 **열**曲 線을 나타내고 있다. 一般으로 이 相의 發達이 잘 되여 있는 硬化體의 强熱重量減少 全量은 發 達이 잘 되어 있지않는 것보다 매우 적었고, 한 편 X-線廻折分析의 同定으로서는 特히 (220) 의 廻折强度가 코며 또한 broad 하게 나타나고 있었다.

結 論

以上 記述한 硏究結果를 總括하면 本實驗範團 에서 다음과 같은 點들을 結論지을 수 있다.

1) 試料 作成時 成形壓 增加에 따른 水熱前 成 形體에 對한 壓縮强度는 比例的으로 增加하지만, 水熱硬化體의 壓縮强度는 成形壓이 7000 p.s.i. 附近으로 될 때 까지 增加되며, 이 壓力 보다 더 커지먼 反對로 減少된다.

2) 一般으로 同一 各 水熱時間에 對하여 水熱溫 度가 140°C 以上이고, C/S mole 比가 0.9 以下인 範國에서는 壓縮强度,抗折强度,引張强度 및 硬 度가 比較的 커지며, 水熱時間이 10 hr. 以上이 되면 도리혀 이들 物性의 實測値가 低下된다.

高一 CaO/SiO₂ mole 比에 對하여 水熱溫度
 가 높을 때는 水熱時間을 짧게 하므로서 또는 水
 熱溫度가 높을 때는 水熱時間을 짧게 함으로서 比
 較的 高强度 및 高硬度의 것을 얻을 수 있다.

4) 겉보기 比重은 2.05~2.20 程度이며, 그 値 가 작은 것들은 一般으로 高强度 및 高硬度인 範 圍에 屬하고 있으며, 여기에는 CaO/SiO₂ mole 比가 0.6 以下인 것들이 主로 存在하고 있다.

5) 一般으로 吸水率이 큰 것들은 모든 水熱條 件에 걸치서 CaO/SiO₂ mole 比가 1.5 以上인 것 들이 主이다.

6) 一般으로 遊離石灰分이 작은 것들의 分布

範圍도 亦是 上記 高强度, 高硬度範圍에 位置하 고 있으며, 特히 CaO/SiO₂ mole 比가 0.9 以下로 작은 것들이 여기에 많이 屬했져 있다.

7) 一般으로 强熱減量이 작은 것들은 모든 水 熱條件에 걸쳐서 主로 CaO/SiO₂ mole 比가 0.3, 0.6 인 것들이다.

8) 本研究實驗 全範圍에 걸쳐 CaO-SiO₂-H₂O 系 水和物의 主要構成體는 tobermorite 이며 特히 이相의 結晶發達이 良好한 것은 D.T.A. 曲線액 서 810~860℃範圍에 發熱 peak 를 나타내며, 이 peak 는 CaO/SiO₂ mole 比가 增加될 수록 高 溫側으로 移行된다.

a) tobermorite 相의 結晶發達이 良好한 것은 T.B.A. 曲線에서 强熱重量減少가 完全히 없 어질 때 까지의 溫度範圍에 결처 溫度上昇에 따 른 强熱重量 減少 變化 曲線이 單調로운 臂曲線 을 이루며, 이런 形態를 나타내는 硬化體들의 强熱重量減少全量은 不良인 것보다 매우 작아서 約 70~80 mg 程度이다. 不良한 것은 變調로운 曲線型을 나타내며 이 曲線에 依하면 500℃前 後 및 700~800℃ 사이에서 急激한 强熱重量減少 가 일어나고 있으며, 이때 700~700℃ 때보다 500℃ 前後에서의 이 變化度가 더욱 甚하다. 就 中 發達이 나쁜 것일 수록 같은 500℃ 前後에 있 어서 그 變化率이 더욱 甚해진다.

10) tobermorite 相의 結晶發達이 比較的 잘된 것일 수록 (2 2 0)의 X-線廻折强度는 커지고 또한 broad peak 을 나타낸다. 이相의 發達은 Ca(OH)₂ (0 0 1), (1 0 0), (1 0 1)의 廻折强度가 減少 할 수록 잘 되지만 SiO₂의 廻折强度에 依한 影 響과는 거이 無關하다.

本研究遂行에 있어서 指導助言을 해주신 國立 工業研究所 第一部長 李鍾根博士와 많은 便宜를 圖謀해주신 國立地質調查所 尚基南先生에 對하 역 深深한 謝意를 表하며, 아울러 本實驗에 助力 해준 漢陽大學校 李應相君에게 感謝하는 바이다.

引用 文獣

- J. D. Bernal: Proc. Symposium on Chemistry of Cements, London, 216~60 (1952).
- G. L. Kalousek J. Am. Concrete Inst., (10) 989 ~1011 (1955).
- 3) S. Brunauer and S. A. Greenberg., Fourth Inter-

李

national Symposium on the Chemistry of Cement, Washington Session Three-Paper one (1960).

- Giichi Sudoh: J. Jap. Ceram. Soc., 69, (12) 401~408 (1961).
- 5) Korean Industrial Standards, L-5107 (1964).
- 6) American Society for Testing and Materials:
 A. S. T. M. X-ray Diffraction Card, No. 4-0733, No. 5-490, No. 6-0359. (1963).
- 7) Giichi Sudoh: J. Jap. Ceram. Soc., 69, (11)

23~34 (1961).

铢

- SCIFAX D. T. A. Card, England. No. A-0783, A-4054 and A-0911 (1962).
- 9) Yoshii, Soudoh: Proceeding Japan Cement Engineering Association, XII, 62~7 (1958).
- Ceramic Engineering Handbook (Jap. Yogyo Kyokai-Pub, 1952.) p. 81
- K. Takemoto: J. Jap. Ceram. Soc., 73, (3-1) 45~51 (1965).