Effects of intraventricular norepinephrine on blood pressure and heart rate of rabbits

Seung Ho Shin

(Directed by Profs. Kyu Chan Cho & Yung In Kim.)

Effects of intraventricular norepinephrine (NE) on rabbit blood pressure and heart rate were investigated.

1) Blood pressure was little affected by small doses of NE (below 500 μg) but showed marked rise by 1 mg. 2) Heart rate was decreased by intraventricular NE (200–500 μg). One mg of NE caused less pronounced bradycardia than with smaller doses. The bradycardia could not be observed in vagotomized or atropinized animals.

3) Intraventricular NE potentiated reflexive bradycardia produced by 5-hydroxytryptamine.

4) Cord-sectioned rabbit showed different responses; the smaller doses (100–200 μg) produced transitory bradycardia and depression of blood pressure, which followed by tachycardia and pressure rise. The transitory bradycardia and depressor effects were not observed in cord-sectioned and vagotomized rabbit.

5) Treatment of animals with reserpine, guanethidine and hexamethonium changed the effects of intraventricular NE on blood pressure, i.e., in these cases the smaller doses of NE caused marked elevation of blood pressure.

6) From these observations it was inferred that central NE caused stimulation of cardioinhibitory and vasomotor center. The former seemed to be more sensitive to NE than the latter. Susceptibility of the vasomotor center to NE seemed to be influenced by peripheral sympathetic tone.

結論

側頭室內投興한 Norepinephrine(NE)의 腦血管系에 끼치는 影響에 關する anxiety에 就해서 以下の Ergara 及 Tangri2) 등은 著明한 影響을 보지 아니한다 하였고 McCubbin 等3)은 血壓下降と 血流を 增加시킨 적도 있었으며 狗에 있어서는 Share 及 Melville4)는 血壓を 增加하고 腦血管이 增大 될 때 血壓下降까지 招来한다 하였다. 狗에서의 側頭室內 NE의 著覚한 效果에 對하여 Kaneko 等5)은 腦血管에 對한 作用結果는 則々하하였다. 著者は 以下の anxiety에 就해서 腦血管運動中樞及 NE間에 關係ある 狗に 作用させる 例에서 腦血管運動中樞 (Vasomotor Center)의 機能과 腦血管系間에 關係ある 狗에 就て 本研究에 對하여 關係ある
実験方法

2kg内外の家児をUrethane (1g/kg 皮下投与) 麻酔下にて人工呼吸をしながら渉過及び実験をした。腹部血管圧：腹部動脈にCanulaを挿入後水銀Manometerを通じて血管圧をKymograph上にて観察し且つ抗凝血剤（Heparin）を使用した。

電気図：一部実験では心電図の変動を観察するために電図も使用した。

側頭室内脳液注入：文の記載方法に準拠して一侧の側頭室内にPolyethylene Canulaを挿入し、薬液注入口は0.2 mlずつ注射し、薬液を注入し直接37℃のヒートパックにて温めした。

脳室結核：Urethane麻酔家児を第1～第2脳室を刺し、脳室三室に注射し、脳室を温めてその内側の動脈圧を観察した。脳室結核後薬液投与前の心電図を1時間観察した。

薬物：使用した薬物はNorepinephrine hydrogen tartarate（Fluka）、Atropine sulfate（Fluka）、Serotonin creatinine sulfate（Merck）、Epinephrine bitartrate（K & K Lab）、Reserpine（Ciba）、Hexamethonium chloride（Fluka）、Guanethidine sulfate（Ciba）、Bretlyium tosylate（Burrough Welcome）、Phenoxycyanamine HCl（Smith kline & French Lab.）Dimethylphenyl piperoxinum iodide（Park & Davis）である。Reserpine、Phenoxycyanamineは除外するが0.9%食塩水にて溶解して使用した。Reserpineは250 mgを250 mgの溶液を含む3 mlの

Benzyl Alcoholに溶解した後に10 mlのTween 80を加えて最終濃度を100 mlにした。Phenoxycy-

namineはEthanol（49.9%）、Propylene glycol（49.9%）及びN-acetic acid（0.2%）の混合液で100 mg/mlでそれぞれ溶解した。注射速度はNorepinephrine、Epinephrine、Seratonin（5-Hydroxytryptamine）を1次として次に示すと表記した。

実験結果

側頭室内にNEを投与した（以下“脳内NE”と略す）耐動脈圧及び心電図の変動を観察した。

A）全身家鬼にあっての実験

脳内NE100 μg（総量）を注射した心電図は若干減少する傾向であった。著変は認めず、200 μg又は1500 μg投与心電図は約5分以内に著明に減少を示し40分後には逆に回復した。血圧は約3～5分間持続性の一過性の軽度の上昇を示す傾向が見られた。15例中5例で大部分例で変動が認められ、下昇を示す例は見られなかった。Table 1はその結果を示したもので、NE投与10～15分後の心電図を表示した。血圧上昇が顕著でない事実であり、結果が出ている。各薬の心電図の減少傾向を除き全部に於て血圧が完全に正常化後の心電図を表示する傾向が見られた。

A) 表に示す値で若干増加している10～15分後の心電図の減少傾向は有意義である。200 μgを注射しP<0.05、500 μgを注射しP<0.05、20～30分後に心電図の回復傾向が見られた。

Table 1 Effects of intraventricular norepinephrine (NE) on heart rate and blood pressure of rabbits.

<table>
<thead>
<tr>
<th>NE doses (μg)</th>
<th>No. of Expt.</th>
<th>Heart rate per min</th>
<th>Blood pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>control</td>
<td>after NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10～15</td>
<td>20～30</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>280 ± 14.0</td>
<td>260 ± 10.0</td>
</tr>
<tr>
<td>200</td>
<td>11</td>
<td>280 ± 10.0</td>
<td>260 ± 10.0</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>292 ± 10.0</td>
<td>285 ± 5.0</td>
</tr>
<tr>
<td>1,000</td>
<td>8</td>
<td>271 ± 11.1</td>
<td>275 ± 5.0</td>
</tr>
</tbody>
</table>

Mean±S.E.
*Each value differs significantly from the controls (P<0.05).
脇內NE의 하부 교감 뉴런의 수축에 영향을 미치는 역할도 있음

(Fig. 1) Rabbit blood pressure: effect of intraventricular norepinephrine. At NE1 mg was injected into lateral ventricle; in left 200 μg, in right 1 mg. Each tracing was obtained from different animal. At 5-HT was given intravenously (10 μg/kg).

Table 1: Blood pressure effect of intraventricular norepinephrine. NE1 mg was injected into lateral ventricle; left 200 μg, right 1 mg. Each tracing was obtained from different animal. At 5-HT was given intravenously (10 μg/kg).

Table 2: Effects of intraventricular norepinephrine (NE) (200 μg) on heart rate and blood pressure of vagotomized rabbits.

<table>
<thead>
<tr>
<th></th>
<th>Heart rate per min</th>
<th>Blood pressure mmHg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control 15 min</td>
<td>Control 5 min</td>
</tr>
<tr>
<td>Intact animal (10 cases)</td>
<td>285±7</td>
<td>243±25</td>
</tr>
<tr>
<td>Vagotomized animal (6 cases)</td>
<td>283±10</td>
<td>271±12</td>
</tr>
</tbody>
</table>

Mean±S.E. *statistically significant decrease (P<0.05) from the controls.

Table 2에서 보나와와 이학한 후에도 담마에서의 이하 하부 교감 뉴런의 수축에 영향을 미치는 역할도 있음

2) 腦內NE의 5-Hydroxytryptamine(5-HT)에 의한 하부 교감 뉴런의 수축에 미치는 영향: 腦내에서 5-HT가 반응성을 둔 하부 교감 뉴런의 교감 뉴런의 수축과 마찬가지로, NE1 mg로 오작용하던 하부 교감 뉴런의 수축은 감소하지 않았으며, 血壓은 亦是對照群에서 완전히 증가하지 않았다.
(Table 3) Effects of intraventricular norepinephrine (NE) (200 μg) on 5-hydroxytryptamine-brady cardiacia.

<table>
<thead>
<tr>
<th></th>
<th>before NE</th>
<th>after NE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 min</td>
<td>30-60 min</td>
</tr>
<tr>
<td>Heart rate per min</td>
<td>285±15.0</td>
<td>242±22.5</td>
</tr>
<tr>
<td>Slowing percentage (range)</td>
<td>70.3 (50-84)</td>
<td>59.5 (46-79)</td>
</tr>
<tr>
<td>Duration (second) showing brady cardiacia</td>
<td>4.6±2.2</td>
<td>8.8*±2.5</td>
</tr>
</tbody>
</table>

Except slowing percentage mean ± S.E.
*Statistically significant prolongation from before NE (P<0.02). Expressed as percentage of number of heart beats for a period of 6 or 12 seconds after beginning of cardiac slowing to that of the original. Expressed as duration showing below two third of the original.

Brady cardiacia”는 5-HT 投與後의 心博數가 投與前의 心博數의 2/3 以下を示す時間のを含むが、一般に 投與後 6 or 12 秒後より延長時間は示すことができる。この場合、脳内NE 投與後 6秒または 12秒後に心博数が前値の2/3未満を示すことができる。P<0.02 との。5-HT 投與後に脳内 NE が存在する場合には抑制作用を示すことが示された。この抑制作用は反射性径路の心室-心房間（心房抑制中枢）- に影響を及ぼすのを推測される。5-HT は、脳内一時的血圧下降効果が脳内NE の影響を示すものではない。

B) 脳内NE減少及び脳内NE減少

Table 4) Effects of intraventricular norepinephrine (100-200 μg) on heart rate and blood pressure of cord-sectioned rabbits.

<table>
<thead>
<tr>
<th>Expt No.</th>
<th>Heart rate per min</th>
<th>Blood pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>maximum decrease</td>
<td>maximum increase</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>-45</td>
</tr>
<tr>
<td>1</td>
<td>125</td>
<td>-65</td>
</tr>
<tr>
<td>2</td>
<td>125</td>
<td>-55</td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td>-70</td>
</tr>
<tr>
<td>4</td>
<td>110</td>
<td>-30</td>
</tr>
<tr>
<td>cord-sectioned plus vagotomized</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>170</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>160</td>
<td>0</td>
</tr>
</tbody>
</table>

内NE의 实験으로서 脳内NE에 依한 心搏減少가 速走 神経と密接한 關係が有的ある。Bhargava 及 Tangri는 5-HT 가 中枢部の 交感神経機能を 低下させることが示されているが、脳内NEは 依存して 交感神経中樞に作用するが、抑制を示すようである。脳内NEの 心搏減少を実験的 検討に よって、脳内NEの 効果を検討して示された。

Table 4에 表示되어 있는 것처럼 脳内NEの 動脈血圧は 20～30 mmHg に大体で ある。脳内NE が 5-HT 投與後 30秒 前後に 心搏数が 増加することができる（Table 4에 表示された数値は 20秒前後の 心搏数を 計測して示した 5倍値）が、これにより 1例を 除外した 4例において 脳内NE に心搏数が 増加することができ、5-HT 投與後 5分前後で 原状態に戻った。脳内NEの 速走神経切断の 血圧を 衝動する 4例の 家兎においては、脳内NEに 依る 心搏減少は 治療可能であった。1例を 除外した 3例に よっては 脳内NEの 心搏数が 増加することができ、5-HT 投與後 30秒 前後で 原状態に戻った。

脳内NE減少が 衝動する 時期に 一致する 一時的の 低下が 有することを示している（Fig.2, Table 4）。速走神経切断 行う家兎において、脳内NEに 依る 心搏減少が 明らかに 有するとき 衝動する 一時的 血圧下降が 脳血流に よって示された。脳内NE投與後 5分以内で 原状態に戻った。

(Fig. 2) Blood pressure of cord-sectioned rabbit: effect of intraventricular norepinephrine.
↑: intraventricular norepinephrine 100 μg.
H: 5-HT 10 μg/kg i.v.
*: Drum was stopped for 20 min. Time: 1 min.
고서 1시간 후에 내경 NE 배출을 반복하였는데 이때는 1회정도 이상이 희소할 정도로 신경수축 및 혈압하강이 보였다.

이상의 실험에 의하면 내경 NE가 전반적 신경수축 감소 및 혈압상승을 한정적으로 확인할 수 있었고 또한 신경계에서 내경 NE가 신경계의 반응을 불가피한 것으로 알려져 있다. 이러한 미세스의 혈압상승은 내경 NE가 전반적 신경수축 및 혈압상승의한 반응을 나타내며, 이는內경 NE의 신경작용중추(vesomotor center)에 의한 직접 작용으로 추정된다 (신경의 하강 내경 NE).

C) 내경 NE의 혈압상승작용의 조정

전체적으로 내경 NE가 혈압상승과 심장 증가를 초래할 모양의 NE가 신경계에서 내경 NE가 혈압상승의 한반응을 보이게 하는 신경계의 tone의 줄이기로 내경 NE의 혈압상승과 혈압상승의 한반응을 각시 내경 NE의 혈압상승과 혈압상승의 한반응을 각시

(Table 5) Modification of effects of intraventricular norepinephrine (i. VT, NE) (100 or 200 μg) on blood pressure response of rabbits by various drugs.

<table>
<thead>
<tr>
<th>Treatment* by (mg/kg)</th>
<th>No. of Expt.</th>
<th>Original B. P.</th>
<th>B. P. after treatment</th>
<th>Maximum increase after i. VT, NE</th>
<th>Significance of increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>11</td>
<td>106 ± 2.3</td>
<td>115 ± 3.9</td>
<td>Nil</td>
<td></td>
</tr>
<tr>
<td>Hexamethonium 2.3~4.1 mg/kg/min</td>
<td>6</td>
<td>113 ± 5.8</td>
<td>65 ± 7.2</td>
<td>125 ± 12.0</td>
<td>P<0.001</td>
</tr>
<tr>
<td>Guanethidine 5mg/kg</td>
<td>6</td>
<td>115 ± 5.6</td>
<td>78 ± 4.8</td>
<td>131 ± 7.3</td>
<td>P<0.001</td>
</tr>
<tr>
<td>Bretylium 5mg/kg</td>
<td>6</td>
<td>112 ± 5.6</td>
<td>97 ± 8.5</td>
<td>115 ± 12.1</td>
<td>Nil</td>
</tr>
<tr>
<td>Reserpine 2mg/kg</td>
<td>8</td>
<td>97 ± 6.9</td>
<td>154 ± 6.3</td>
<td>P<0.001</td>
<td></td>
</tr>
</tbody>
</table>

Mean±S.E.

*Hexamethonium was infused for about 30 min, guanethidine and bretylium was each given as a single dose and reserpine was given 3 hours before experiment. i. VT, NE was each given 30~60 min after treatment except case of reserpine.

(Fig. 3) Rabbit blood pressure: modification of effect of intraventricular norepinephrine by reserpine. N: intraventricular norepinephrine 100 μg, E: epinephrine 2.5 μg/kg i.v., Time: 1 min.
1) **Reserpine**: Reserpine 2 mg/kg 静脈内投與 3~4 시간 후에 血壓은 若干 下降하여 있었으나 心搏数는 顕著한 減少를 나타내었다(1분: 130~180). 特に靜脈内NE(2 μg/kg) 또는 Epinephrine (2 μg/kg)의 立馬效果는 對照動物에 비하여 顕著하게 컸다. 이에 脳内NE 100 μg 또는 200 μg를 投與하면 血壓은 顕著한 上昇을 表現하며 通常한 原血壓으로 下降하였다. (Fig. 3, Table 5)

心搏亦는 增加되었으며 增加에 頸著한 減少는 볼 수 없었다. (6例에서 各各 1分間 180, 180, 130, 140, 150, 150. (平均 155) 있던것이 脳内NE 후에는 各各 190, 190, 180, 180, 160, 190 (平均 182)으로 增加되었었다.

2) **Hexamethonium**: Hexamethonium 2.3~4.1 mg/kg/分을 脳靜脈内에 接続投與하면 감시カルド라가 나 또는 立馬效果는 50 mmHg 내외)를 그대로 維持하고 있었다. 이에 脳内NE 또는 Epinephrine에 依한 血壓上昇效果는 Hexamethonium 接続前に 比하여 增加되어 있고 Dimethylphenylpiperazinium은 依類한 效果를 보이지 못하였다. 脳内NE(200 μg)는 例外이投與直後에 顕著한 血壓上昇은 이르렀다. 그러나 Reserpine處理家兎의 血壓上昇은 持續性가 有助고 2~3分内外에 原血壓狀態을 復帰하였다.

![Rabbit blood pressure](image)

(Fig. 4) Rabbit blood pressure: modification of effect of intraventricular norepinephrine by guanethidine.
N: intraventricular norepinephrine 100 μg, E: epinephrine 2.5 μg/kg, G: guanethidine 5 mg/kg i.v. At drum was stopped for 10 min. Between left and right tracing 20 min elapsed. Time: 1 min.

3) **Guanethidine**: Guanethidine 5 mg/kg의 静脈內投與로서 血壓은 急速하나 30~60分後에는 相当히 恢復되어 大略 70~90 mmHg을 보였다. 이에 静脈内NE Epinephrine의 效果는 強化되었다. 脳内NE(100 μg 또는 200 μg)는 顕著한 一時의 血壓上昇을 일으켰으며 그 pattern은 Hexamethonium 處理時의 비슷하였다 (Fig. 4).

4) **Bretylum**: 5 mg/kg의 静脈投與로 一時의 急激한 下降을 보나後은 原血壓에 회도로 오거나 또는 5~10分後에 회도하였다. Bretylum 20~30分後 亦是 静脈内NE效果는 強化되어 있었다. 그러나 脳内NE의 效果는 上述의 Hexamethonium, Guanethidine 등의 處理時의 大略 6例中 5例에서는 原血壓 1例에서는 約 50 mmHg 以上을 보였고 그 외 1例에서는 約 50 mmHg를 보였다.

5) **Phenoxybenzamine**: 5 mg/kg로 顕著한 血壓下

考按

側臥位에 投與한 NE의 血管効應에 미치는 本家兔實驗成績은 猴을의 成績과 一致하여 心搏減少는 일

58.
家庭において脳内NEが軽やかに心拍減少を認めるが、その他の心拍減少を認めた症例では、脳内NEが全身性に吸収されることが考えられる。このことから、脳内NEは心拍減少の原因を示唆する可能性がある。また、脳内NE的作用機（Cardioinhibitory center）が心拍抑制に寄与していることが示唆される。

脳内NEの作用機は、脳内NEの作用機を調節するための薬物療法の導入が考えられる。具体的には、脳内NEの作用機を減弱する薬物の使用が考えられる。また、脳内NEの作用機を増強する薬物の開発も検討されている。

3) 心拍減少はReserpineが脳組織の透過性に影響を与え、それを招来する可能性も否定できない。したがって、脳内NEの作用機である脳内NEの作用機を調節する薬物療法の導入が必要と考えられる。
본 실험에서 또 다른 문제가 있는 것은 Reserpine, Guanethidine, Hexamethonium 등의 처리 후에 두 개의 온도로 농도를 측정하는 문제이다. 이들 물질은 모두 소량의 Reserpine, Guanethidine, Hexamethonium 등의 처리 후에도 두 개의 온도로 농도를 측정하는 것이 가능하다. 그러나 농도의 변화에 따라 반응의 진관이 발생할 수 있는 경우, 두 개의 온도로 농도를 측정하는 것이 보다 정확한 방법으로 여겨진다. 또한, 농도의 변화에 따라 반응의 진관이 발생할 수 있는 경우, 두 개의 온도로 농도를 측정하는 것이 보다 정확한 방법으로 여겨진다.

6. 鄭寅成: Guanethidine 作用으로한 家兎血壓反應 全南醫大雜誌 印刷中

大韓藥理學雑誌

大韓中外製藥株式會社
社長 李基石

大韓藥理學雑誌

株式會社 鍾根堂製藥社
社長 李鍾根

大韓藥理學雑誌

天道製藥株式會社
社長 趙元準