NOTES ON THE LATTICE OF CONGRUENCE RELATIONS ON A LATTICE

By Tae Ho Choe

Introduction. Let L be a lattice. A congruence relation θ in L is a binary relation $a \equiv b(\theta)$ between two elements a and b in L, defined by the four properties:

(1) Reflexivity. For any a, $a \equiv a(\theta)$.

(2) Symmetry. When $a \equiv b(\theta)$, then $b \equiv a(\theta)$.

(3) Transitivity. When $a \equiv b(\theta)$ and $b \equiv c(\theta)$, then $a \equiv c(\theta)$.

(4) Substitution. When $a \equiv b(\theta)$ and $x \equiv y(\theta)$, then $a \cap x \equiv b \cap y(\theta)$ and $a \cup x \equiv b \cup y(\theta)$.

Let Φ be the set of all congruence relations defined on L. G. Birkhoff [1] has proved the following theorem: Let C be any subset of Φ . One defines new relations $\hat{\xi}$ and η by (i) $a \equiv b(\hat{\xi})$ means $a \equiv b(\theta)$ for all $\theta \in C$, (ii) $a \equiv b(\eta)$ means that for some finite sequence: $a = x_0, x_1, \dots, x_m = b, x_{i-1} \equiv x_i(\theta_i)$ for some $\theta_i \in C$. Then $\hat{\xi}$, η are congruence relations: moreover $\hat{\xi}$ is the g.l. b. and η the l.u. b. of the C. And N. Funayama and T. Nakayama have proved that Φ satisfies the infinite distributive law: $\theta \cap (\cup_i \theta_r) = \cup_r (\theta \cap \theta_r)$ for all $\theta, \theta_r \in \Phi$.

In this paper we shall find a necessary and sufficient conditions that Φ should form a Boolean algebra, when all bounded chains in L are finite.

Cn the other hand, we can see that on even a chain C which is dense-in-itself, the set Φ of all congruence relations is not complemented. In fact, let θ be the congruence relation on C such that $a \equiv b(\theta)$ for all a, $b \in [c, +\infty]$, $x \equiv y(\theta)$ for all x, $y \in [-\infty, c)$ and $a \equiv x(\theta)$ for any $a \in [c, +\infty]$ and any $x \in [-\infty, c)$, where $C = [-\infty, c) \lor [c, +\infty]$. Now suppose that there exists a complement θ' of $\theta: \theta \cup \theta' = I$ and $\theta \cap \theta' = O$, where $a \equiv b(I)$ holds for all a, b in C, I will be called the *unit* conguence relation, and $a \equiv b(O)$ holds only when a=b, O will be called the *zero* congruence relation. Thus we have $c \equiv x(\theta \cup \theta')$ for any x < c. therefore there exists a sequence $[x_i]$ such that $c=x_0, x_1, \dots, x_n=x, x_{i-1}\equiv x_i(\theta \text{ or } \theta')$. Since $c \equiv x(\theta)$ for x < c we can find the first $x_j \in \{x_i\}$ such that $x_{j-1} \ge c > x_j$ and $x_{j-1} \equiv x_j(\theta)$, and hence $x_{j-1} \equiv x_j(\theta')$ and $x_j \equiv c(\theta')$ because any congruence class is convex. Since C is dense-in-itself, there exists $y \in C$: $x_j < y < c$. And $x_j \equiv y(\theta')$. But $x_j, y \in [-\infty, c)$ and $x_j \equiv y(\theta \cap \theta')$, which follows $\theta \cap \theta \neq 0$. It means $\theta' \neq$ complement

of θ .

According to the above reason, we consider only the case that all bounded chains are finite in a lattice. The main contents of the paper are as follows. In the first section we shall prove that Φ of a modular lattice in which any bounded chains are finite forms a Boolean algebra. J. von Neumann [2] has proved the above statement for a modular lattice of finite length. In the second section for non-modular lattice we shall find a congruence relation which has its complement congruence relation, and find a necessary and sufficient condition that Φ forms a Boolean algebra. In the third section we define an 1-congruence relations on an 1-group, and we shall prove that if an 1-group is satisfing the chain condition, then all 1-congruence relations forms a sub-Boolean algebra of the Boolean algebra Φ .

2. Congruence relations on a modular lattice.

In the following we shall use the ordinary terminology of [1]. A closed interval (or quotient) [x, y] is called *prime* if and only if y covers x. Intervals which can be written as $[x \cap y, x]$ and $[y, x \cup y]$ are called *transposes*, while two quotients [x, y] and [x', y'] are called *projective* if and only if there exists a finite sequence [x, y], $[x_1, y_1]$,, [x', y'] in which any two successive quotients are transposes, in symbols $[x, y] \sim [x', y']$. And it is well known that the relation of projectivity between prime intervals is an equivalence relation. Hence we can consider the set P of classes P_{α} of projective prime quotients. And P_{α} shall be called *projective* class. In this section we shall prove that Φ of a modular lattice in which all bounded chains are finite forms a Boolean algebra, which is some extension of J. von Neumann's result [2]. First of all, we prove the following two lemmas

LEMMA 1. (i) Let L be a modular lattice in which all bounded chains are finite, P_{α} a class of projective prime quotients (i.e. $P_{\alpha} \in P$) and θ a congruence relation on L. Then for some $[a, b] \in P_{\alpha}$ if $a \equiv b(\theta)$, then $c \equiv d(\theta)$ for all $[c, d] \in P_{\alpha}$.

(ii) Suppose $[a \cap b, a \cup b]$ is a modular sublattice of L. And let $[a \cap b, b]$, $[a, a \cup b]$ be transposes quotients. Then for a maximal chain: $a \cap b < x_1 < x_2 < \cdots < x_{n-1} < b$ connecting $a \cap b$ to b, there exists a maximal chain: $a < x'_1 < x'_2 < \cdots < x'_{n-1} < a \cup b$ connecting a to $a \cup b$ such that $[x_i, x_{i+1}] \sim [x'_i, x'_{i+1}]$.

24

PROOF. (i) is obvious.

For (ii), we are well known [1] that the correspondence: $x \rightarrow a \cup x$ is isomorphism between $[a \cap b, b]$ and $[a, a \cup b]$. Since the chain $a \cap b < x_1 < \cdots < x_{n-1} < b$ is maximal which means x_{i+1} covers x_i , the chain $a < x_1 \cup a < \cdots < x_{n-1} \cup a < b \cup a$ is also maximal. And $[x_i, x_{i+1}] \sim [x_i \cup a, x_{i+1} \cup a]$. In fact,

$$x_{i+1} \cap (x_i \cup a) = x_i \cup (x_{i+1} \cap a) = x_i \cup \{(x_{i+1} \cap b) \cap a\} = x_i \cup (b \cap a) = x_i.$$

LEMMA 2. Under the same hypotheses of lemma I, for a chain Υ connecting a to b, let S be the set of projective classes having at least one prime quotient in Υ . Then any prime quotient in any chain connecting a to b belongs to some P_{α} in S.

PROOF. If chain $\mathcal{T}: a=x_0 < x_1 < \cdots < x_m=b$ has length m, then by Jordan-Dedekind chain condition every maximal chain cennecting a to b has length m. So let $\mathcal{T}':$ $a=y_0 < y_1 < \cdots < y_m=b$ be any other maximal chain connecting a to b. Using induction on m, we are going to prove the lemma. If m=1, then the lemma is obvious. We assume the lemma holds for all $m \leq n-1$. For the case m=n, if $x_1=y_1$ then lemma also holds by the hypothese of induction. Suppose $x_1 \neq y_1$. Since x_1 and y_1 cover a, $u=x_1 \cup y_1$ covers x_1 and y_1 by the covering condition. Since each $[x_1, x_2]$, $\cdots , [x_{n-1}, x_n] \in$ some P_{α} in S, the hypothese leads also $[x_1, u] \in$ some P_{α} in S, and so is any prime quotient in [u, b]. Because of $[a, x_1] \sim [y_1, u]$, $[y_1, u] \in$ some P_{α} in S. Hence each $[y_1, y_2]$, $\cdots , [y_{n-1}, y_n] \in$ some P_{α} in S. Since $[a, y_1] \sim [x_1, u]$, it follows each $[a, y_1]$, $[y_1, y_2]$, $\cdots , [y_{n-1}, y_n] \in$ some P_{α} in S.

Now we prove the following main lemma

LEMMA 3. Let L be a modular lattice in which all bounded chain are finite, and θ congruence relation on L. Then there exists a complement congruence relation θ' of $\theta: \partial \cap \theta' = 0$ and $\theta \cup \theta' = I$.

PROOF. Let S_1 be the set of projective classes having at least one prime quotient which is in the quotient $[a \cap b, a \cup b]$ for some $a \equiv b(\theta)$, and P the set of all projective classes on L. Set $S_2 = P - S_1$. We define a new congruence relation θ' as following: $x \equiv y(\theta')$ if and only if either x = y or any prime quotient in the

Tae Ho Choe

quotient $[x \cap y, x \cup y] \in \text{some } P_{\alpha}$ in S_2 . Then we can see that the relation θ' is a congruence relation, moreover $\theta \cap \theta' = 0$ and $\theta \cup \theta' = I$. For, from the definition we have directly that θ' is reflexive and symmetric. Next for the transitivity, we suppose $x \equiv y(\theta')$ and $y \equiv z(\theta')$, i.e. for all prime quotients J in $[x \cap y, x \cup y]$ or in $[y \cap z, y \cup z]$, $J \in \text{some } P_{\alpha}$ in S_2 . Since

$$[x \cap y, x \cup y] \supset [x \cap y, (x \cap y) \cup (y \cap z)] \sim [x \cap y \cap z, y \cap z],$$

by (ii) of lemma 1, we have that all prime quotients $J \in [x \cap y \cap z, y \cap z]$ implies $J \in$ some P_{α} in S_2 . Dually, any prime quotient $J \in [y \cup z, x \cup y \cup z]$ implies $J \in$ some P_{α} in S_2 . Since

$$[x \cap y \cap z, y \cap z] \lor [y \cap z, y \cup z] \lor [y \cup z, x \cup y \cup z]$$

$$\subset [x \cap y \cap z, x \cup y \cup z].$$

we see that there exists a chain γ connecting $x \cap y \cap z$ to $x \cup y \cup z$ such that any prime quotient of $\gamma \in \text{some } P_{\alpha}$ in S_z . Hence by lemma 2 it follows that any prime quotient J in $[x \cap y \cap z, x \cup y \cup z]$ is contained in some P_{α} in S_z . And so is any prime quotient in $[x \cap z, x \cup z]$, which follows $x \equiv z$ (θ'). Hence the the relation θ' is transitive. Now we will see that the substitute property of θ' holds. It is sufficient to show that

$$x \equiv y(\theta')$$
 implies $x \cup z \equiv y \cup z(\theta')$ and $x \cap z \equiv y \cap z(\theta')$

for any $z \in L$. Suppose $x \equiv y(\theta')$ i.e., for any prime quotient J in $[x \cap y, x \cup y] \in \text{some } P_{\alpha}$ in S_2 . Since

$$[x \cap y \cap z, (x \cap z) \cup (y \cap z)] \subset [x \cap y \cap z, (x \cup y) \cap z]$$

~
$$[x \cap y, (x \cap y) \cup \{(x \cup y) \cap z\}] \subset [x \cap y, x \cup y],$$

it follows that any prime quotient in

$$[x \cap y \cap z, (x \cap z) \cup (y \cap z)] = [(x \cap z) \cap (y \cap z), (x \cap z) \cup (y \cap z)]$$

is contained in some $P\alpha$ in S_2 . Hence $x \cap z \equiv y \cap z(\theta')$. And dually we see $x \cup z \equiv y \cup z(\theta')$. This concludes θ' is a congruence relation on L. Finally we prove that $\theta \cap \theta' = 0$ and $\theta \cup \theta' = I$. In fact, if $a \equiv b(\theta)$ $(a \neq b)$, i.e., any prime quotient in $[a \cap b, a \cup b]$ is contained in some $P\alpha$ in S_1 . Since $S_2 = P - S_1$, we have $a \equiv b(\theta')$. Hence it leads to $\theta \cap \theta' = 0$. Next for any $a, b \in L$, $[a \cap b, a \cup b]$ is a bounded chain. Therefore there exists a maximal chain: $a \cap b < x_1 < x_2 < \cdots < a \cup b$ of finite length. While $x_{i-1} \equiv x_i (\theta \text{ or } \theta')$ we have $a \cap b \equiv a \cup b (\theta \cup \theta')$. This leads to $a \equiv b (\theta \cup \theta')$, which shows $\theta \cup \theta' = I$.

Hence we have the following theorem

THEOREM 1. Let L be a modular lattice in which all bounded chains are finite. Let $\Phi = \{\theta \mid \theta \text{ is congruence relation on } L\}$. Then Φ forms a Boolean algebra. Moreover $\Phi \cong 2^{p}$, where P is the set of all projective classes of prime qutients on L.

PROOF. We are well known Φ is distributive, and complemented by the lemma 3. Thus Φ is Boolean algebra. In the lemma 1 and the prove of lemma 3 it is established that for some congruence relation θ there exists one and only one subset S of P, and converse. It is evident that $\theta_1 \leq \theta_2$ if and only if $S(\theta_1) \leq S(\theta_2)$ in P, where $S(\theta_i)$ is the subset of P corresponding to the congruence relation θ_i .

3. Congruence relations on non-modular lattice.

In this section we consider the set Φ of all congruence relations on non-modular lattice L.

Y. Mayeta [3] has defined the following quotient ideal:

DEFINITION. Let L be a lattice and N the set of quotients of L is called *quotient ideal* if and only if N satisfies the followings.

(i) For any $a \in L$ [a, a] $\in N$.

(ii) For any $[a, b] \in N$, $[x, y] \subset [a, b]$ implies $[x, y] \in N$.

(iii) For any $[a, b] \in N$, $[a, b] \sim [x, y]$ implies $[x, y] \in N$.

(iv) $[a, b], [b, c] \in N$ implies $[a, c] \in N$.

And for a congruence relation θ a quotient [a, b] is called *nullized* by θ if $a \equiv b$.

 (θ) . He also has proved that if N is a quotient ideal in L, then there exists a congruence relation θ such that N is equal to the set of all quotients which are nullized by the θ . It is well known that if L is non-modular lattice, then L contains a sublattice isomorphice to the five-element lattice of Fig. 1, and a sublattice M = [z, u] in L is called *non-modular subset*. A quotient [x, y] shall be said *non-modular quotient* if there exists a finite sequence $\{zi\}: x=z_0 < z_1 < \cdots < z_n = y$ such that either

 $[z_{i-1}, z_i] \sim [\alpha_i, \beta_i]$ or $[z_{i-1}, z_i] \subset [\alpha_i, \beta_i]$

Tae Ho Choe

for α_i , $\beta_i \in \text{some non-modular subset of L. A quotient } [a, b]$ shall be said to be *chain connected* to [c, d] when there exists a finite series of quotients $[x_i, y_i]$ such that

 $[a, b] \sim (\text{or } \subset) [x_1, y_1] \sim (\text{or } \subset) [x_2, y_2] \sim (\text{or } \subset) \cdots \sim (\text{or } C) [c, d].$

Now let N be the set of all quotients [a, b] which is chain connected to a quotient [c, d] having a finite series of quotients $[c, u_1]$, $[u_1, u_2]$, \cdots , $[u_{m-1}, d]$ such that after finite chain connecting steps each $[u_{i-1}, u_i]$ is finally chain connected to some non-modular quotient.

If we allow that $[a, a] \in N$ for any $a \in L$, it then is easily seen that N forms a quotient ideal in L.

By the result of Y. Mayeta, we can find the congruence relation ξ such that N is equal to the set of all quotients which are nullized by the ξ .

Evidently $\alpha \equiv \beta$ (ξ) for α , $\beta \in$ any non-modular subset. This congruence relation ξ is called *modularlized*.

Let $L/\hat{\xi}$ be the quotient lattice of L by $\hat{\xi}$, i.e., the set of all congruence classes by $\hat{\xi}$. Then $L/\hat{\xi}$ is clarely a modular lattice, if one defines $\overline{x \cup y} = \overline{x \cup y}, \ \overline{x \cap y} = \overline{x \cup y}$

Now we can prove the following.

LEMMA 4. Let L be non-modular lattice in which any bounded chain is finite, and $\hat{\xi}$ the modularlized congruence relation of L. Then there exists a complement congruence relation $\hat{\xi}'$ of $\hat{\xi}$.

PROOF. Let S_1 le the set of projective classes having at least one prime quotient in $[a \cap b, a \cup b]$ for some $a \equiv b$ (ξ) and P the set of all projective classes of prime quotient on L. Set $S_2 = P - S_1$. And we define a new congruence relation ξ' as following: $x \equiv y$ (ξ') if and only if either x = y or any prime quotient in $[x \cap y, x \cup y] \in$ some P_α in S_2 , where P_α is a projective class of prime quotients of L. If any prime quotient in $[x \cap y, x \cup y] \in$ some P_α in S_2 , then we can see: the quotient $[x \cap y, x \cup y]$ is a modular sublattice of L. For, if there exists a non-modular subset M in $[x \cap y, x \cup y]$, then we can find a projective class P_α in S_2 having a prime quotient $[\alpha, \beta]$ for $\alpha, \beta \in M$. But on the other hand, since $\alpha \equiv \beta$ (ξ), we have $P_\alpha \in S_1$, which is unreasonable. Hence the quotient $[x \cap y, x \cup y]$ is a modular sublattice of L. Therefore we see that in the modular sublattice $[x \cap y, x \cup y]$ is a $x \cup y$], lemma 1 and 2 are satisfied. Thus by a similar way as was done in the proof of lemma 3, we are easily seen that $\hat{\xi}'$ is a congruence relation, moreover $\hat{\xi} \cap \hat{\xi}' = 0$ and $\hat{\xi} \cup \hat{\xi}' = I$.

It is easily seen that if a congruence relation θ in L satisfies $\alpha \equiv \beta$ (θ) for all α , $\beta \in$ any non-modular subset in L, then $\theta \geq \hat{\xi}$.

And we can prove:

LEMMA 5. Let Ψ be the set of all congruence relations θ such that $\alpha \equiv \beta$ (θ) for all α , $\beta \in$ any non-modular subsct in L, and Φ/ξ the set of all congruence relations defined on the quotient lattice L/ξ by ξ . Then Ψ is isomorphic to Φ/ξ .

PROOF. For any $\theta \in \Psi$, clearly $\xi \leq \theta$, i.e., $x \equiv y(\xi)$ implies $x \equiv y(\theta)$. If $a \equiv b(\xi)$ in L, then $a = \overline{b}$ in L/ξ . Now we defined a new relation $\overline{\theta}$ on L/ξ as following: $a \equiv \overline{b}(\overline{\theta})$ in L/ξ if and only if $a \equiv b(\theta)$ for some $a \in \overline{a}$ and $b \in \overline{b}$. Then we are easily seen that $\overline{\theta}$ is a congruence relation on L/ξ . Set $\overline{\theta} = f(\theta)$. Then f is one-to-one. For, for θ , $\eta \in \Psi(\theta \equiv \eta)$, there is a pair a, b in L such that either.

(i) $a \equiv b$ (θ) and $a \equiv b$ (η) i.e., $a \cap b \equiv a \cup b$ (θ) and $a \cap b \equiv a \cup b$ (η)

or (ii) $a \equiv b(\theta)$ and $a \equiv b(\eta)$ i.e., $a \cap b \equiv a \cup b(\theta)$ and $a \cap b \equiv a \cup b(\eta)$

For the case (i), since $a \cap b \equiv a \cup b$ (η) there exists a prime quotient [x, y] in $[a \cap b, a \cup b]$ such that $x \equiv y$ (η), which means $\bar{x} \equiv \bar{y}$ ($\bar{\eta}$). On the other hand, $x \equiv y$ (θ), which means $\bar{x} \equiv \bar{y}$ ($\bar{\theta}$).

Hence $\overline{\theta} \neq \overline{\eta}$ i.e., $f(\theta) \neq f(\eta)$. The order preservings of f and f^{-1} is almost trivial.

Thus by theorem 1 we know that $\Phi/\hat{\xi}$ is to be a Boolean algebra because $L/\hat{\xi}$ is a modular lattice. Hence Ψ is also a sub-Boolean algebra with zero element $\hat{\xi}$ and unit element I in Φ .

Now we shall prove that any $\theta \in \Psi$ has its complement congruence relation θ' in Φ .

Let θ be any congruence relation in Ψ . There exists a complement congruence

relation $\overline{\theta}'$ of $\overline{\theta}$ on Φ/ξ . So we can find η in Ψ such that $f(\eta) = \overline{\theta}'$, where $\overline{\theta} = f(\theta)$. Setting $\theta' = \eta \cap \xi'$, we can see: θ' is a complement of θ in Φ . In fact, we first prove $\theta \cap \theta' = 0$ in Φ . It suffices to show that $x \equiv y \ (\theta \cap \theta')$ for any prime quotient [x, y]. If $x \equiv y \ (\xi)$, then $x \equiv y \ (\xi')$ i.e., $x \equiv y \ (\theta')$ which follows $x \equiv y \ (\theta \cap \theta')$. If $x \equiv y \ (\xi)$, then we have the following two cases:

(i)
$$x \equiv y$$
 (θ) and (ii) $x \equiv y$ (θ)

For (i), we have $\bar{x} \equiv \bar{y}$ ($f(\theta)$). Since $\bar{x} \neq \bar{y}$ in L/ξ , we can see: $x \equiv y$ (η) Thus $x \equiv y$ ($\theta \cap \theta'$). For (ii), we have immediately $x \equiv y$ ($\theta \cap \theta'$). Next we prove $\theta \cup \theta' = I$. Since Φ is distributive we have

$$\theta \cup \theta' = (\theta \cup \eta) \cap (\theta \cup \xi').$$

For any a and $b \in L$, let $a \cap b = a_0 < a_1 < \dots < a_m = a \cup b$ be a maximal chain connecting $a \cap b$ and $a \cup b$.

If $a_{i-1} \equiv a_i (\theta)$, then $a_{i-1} \equiv a_i ((\theta \cup \eta) \cap (\theta \cup \hat{\xi}))$. If $a_{i-1} \equiv a_i (\theta)$ for some *i*, then $\overline{a_{i-1}} \equiv \overline{a_i} (f(\theta))$ in $L/\hat{\xi}$ which follows $a_{i-1} \equiv a_i (\eta)$. While $a_{i-1} \equiv a_i (\theta)$, we have $a_{i-1} \equiv a_i (\hat{\xi})$ i.e., $a_{i-1} \equiv a_i (\hat{\xi}')$ because a_i covers a_{i-1} . Hence $a_{i-1} \equiv a_i ((\theta \cup \eta) \cap (\theta \cup \hat{\xi}'))$ for any *i*. It follows $a \equiv b ((\theta \cup \eta) \cap (\theta \cup \hat{\xi}'))$, which completes the proof.

Hence we have the following theorem

THEOREM 2. Let L be non-modular lattice in which all bounded chains are finite, and Ψ the set of all congruence relations by which all elements of each non-modular subset are nullized. Then for any $\theta \in \Psi$, there exists a complement of θ in Φ , and moreover $\Psi \cong 2^Q$, where Q is the set of all projective classes of the quotient lattice L/ξ . Conversely, let Ψ' be the set of each complement of $\theta \in \Psi$. Then each $\eta \in \Phi - (\Psi \lor \Psi')$ has not its complement.

Now we shall show the converse of the theorem. First of all, we give the following obvious lemma:

LEMMA 6. (i) Let θ be a congruence relation on a lattice L, and S a sublattice of L, then the contraction $[\theta]$ of θ on S is also a congruence relation of S.

(ii) If θ' is a complement of θ on L, then $[\theta']$ is also a complement of the $[\theta]$ on S.

Let η be any congruence relation of L in $\Phi - (\Psi \lor \Psi')$. Since L is non-modular lattice, there exists at least one sublattice S isomorphic to the five-element lattice of Fig. 1. Thus the contraction $[\eta]$ of η on S is a congruence relation of S. Clearly the $[\eta]$ is not trivial congruence relations (O or I) on S. Thus $[\eta]$ is either

(
$$\alpha$$
) $a \equiv b \equiv z$ ([η]), $x \equiv u$ ([η]) and $a \equiv x$ ([η]),

or (β) $u \equiv a \equiv b$ ([η]), $x \equiv z$ ([η]) and $x \equiv u$ ([η]) on Fig.1

Suppose there exists a complement η' of η on L. Then $[\eta']$ is a complement of $[\eta]$ on S. But $[\eta']$ is neither (α) nor (β) .

THEOREM 3. In non-modular lattice in which all bounded chains are finite, Φ is a Boolean algebra if and only if $\Phi = \Psi \lor \Psi'$.

3. L-ideals and 1-congruence relations

In this section we shall denote by L an l-group [1].

LEMMA 7. Let L be an l-group which satisfies the chain condition [1]. Then in L any bounded chain is finite

PROOF. Let γ be a chain connecting *a* to *b*. By the theorem 21 (in [1], p.236) *L* is commutative and *a* and *b* are expressed uniquely as a sum of integeral multiples of finite number of distinct primes:

 $a = m_1 p_1 + m_2 p_2 + \dots + m_r p_r, \quad b = n_1 p_1 + n_2 p_2 + \dots + n_s p_s.$

Where $r \leq s$ and $n_i - m_i \geq 0$, p_i is a prime in L. Hence the length of $\gamma \leq$

 $(n_1-m_1)+(n_2-m_2)+\cdots+(n_r-m_r)+n_{r+1}+\cdots+n_s$

COROLLARY. Let L be an l-group which satisfies the chain condition, and Φ the set of all congruence relations defined on L. Then Φ forms a Boolean algebra.

A congruence relation θ of L is called an *l*-congruence relation if and only if $a \equiv b(\theta)$ and $c \equiv d(\theta)$ imply $a+c \equiv b+d(\theta)$. And by an *l*-ideal \mathcal{O} of L is meant a normal subgroup of L in which $a, b \in \mathcal{O}$ and $a \cap b \leq x \leq a \cup b$ imply $x \in \mathcal{O}$.

Clearly we can see:

 $\Psi = \{ \theta \mid \theta \text{ is l-congruence relation} \} \cong \{ \mathcal{O} \mid \mathcal{O} \text{ is l-ideal} \}$

LEMMA 8. Let L be an l-group which satisfis the chain condition, and Q the set of prime quotient whose form is [np, (n+1)p] for any prime p and an integer n. Then P and Q are one-to-one, where P is the set of all projective classes of prime quotients of L.

PROOF. It is well known that b covers a if and only if for $a = np + mq + \dots + lr$, $b = (n+1)p + mq + \dots + lr$ or $b = np + (m+1)q + \dots + lr$ or \dots or $b = np + mq + \dots + (l+1)r$. where n, m, \dots, l are integers and p, q, \dots, l prime. And we are easily seen that $[np, (n+1)p] \sim [a, b]$ (projective) if and only if a = np + s and b = (n+1)p + s $(p \in s)$. Therefore a projective class P_{α} of prime quotients containing [np, (n+1)p]is the set of all prime quotients whose form are [np+s, (n+1)p+s]. Thus by the corresponding: P_{α} ($\ni [np, (n+1)p]$) $\longrightarrow [np, (n+1)p]$, P and Q are oneto-one.

Denote $[p] = \{[np, (n+1)p] | n=0, \pm 1, \pm 2, \cdots\}$ for some prime p, and $R = \{[p], [q], \cdots\}$ for all primes p, q, \cdots , in L.

Since l-ideal \mathcal{O} is a subgroup of L, it is easy that $p \in \mathcal{O}$ implies $np \in \mathcal{O}$ for $n=0, \pm 1, \pm 2, \dots$. Thus all prime quotients in [p] are nullized by the l-congrence relation corresponding \mathcal{O} . Hence clearly we have $\Phi \cong 2^Q$ and $\Psi \cong 2^R$.

Hence we have the following theorem

THEOREM 4. Let L be an l-group which satisfies the chain condition, and $\Phi = \{ all \ congruence \ relations \}, \ \Psi = \{ all \ l-congruence \ relations \}.$ Then Ψ is a sub-Boolean algebra of the Boolean algebra Φ , and moreover $\Psi \cong 2^R$, where $R = \{ all \ primes \ in \ L \}.$

COROLLARY. The set of all l-ideals in L is an atomic complete Boolean algebra. (This corollary was already proved in [1] p. 236).

Mathematical Departement Liberal Arts and Science College

32

Notes on the lattice of congruence relations on a lattice

Kyungpook University

REFERENCES

- [1] G. Birkhoff, Lattice Theory, rev. ed. New York (1948)
- [2] J. von Neumann, Lectures on Continuous Geometries, Princeton, 1936-37, 2 vols.
- [3] Y. Mayeta, Continuous Geometries, Iwanami Japan. (1952).
- [4] N. Funayama and T. Nakayama, On the Distributivity of a Lattice of Lattice-Congruences, Proc. Imp. Acad. Tokyo 18(1942).
- [5] O. Ore, Theory of equivalence relation, Duke Math. J. Vol.9 (1942).