NOTES ON THE Lattice OF CONGRUENCE RELATIONS ON A LATTICE

By Tae Ho Choe

Introduction. Let L be a lattice. A congruence relation θ in L is a binary relation $a \equiv b(\theta)$ between two elements a and b in L, defined by the four properties;
(1) Reflexivity. For any $a, a \equiv a(\theta)$.
(2) Symmetry. When $a \equiv b(\theta)$, then $b \equiv a(\theta)$.
(3) Transitivity. When $a \equiv b(\theta)$ and $b \equiv c(\theta)$, then $a \equiv c(\theta)$.
(4) Substitution. When $a \equiv b(\theta)$ and $x \equiv y(\theta)$, then $a \cap x \equiv b \cap y(\theta)$ and $a \cup x \equiv b \cup y(\theta)$.

Let Φ be the set of all congruence relations defined on L. G. Birkhoff [1] has proved the following theorem: Let C be any subset of Φ. One defines new relations ξ and η by (i) $a \equiv b(\xi)$ means $a \equiv b(\theta)$ for all $\theta \in C$, (ii) $a \equiv b(\eta)$ means that for some finite sequence: $a=x_{0}, x_{1}, \cdots \cdots, x_{m}=b, x_{i-1} \equiv x_{i}\left(\theta_{i}\right)$ for some $\theta_{i} \in C$. Then ξ, η are congruence relations; moreover ξ is the g.l.b. and η the l. u. b. of the C. And N. Funayama and T. Nakayama have proved that Φ satisfies the infinite distributive law: $\theta \cap\left(\cup_{,} \theta_{r}\right)=\cup_{r}\left(\theta \cap \theta_{r}\right)$ for all $\theta, \theta_{r} \in \Phi$.

In this paper we shall find a necessary and sufficient conditions that Φ should form a Boolean algebra, when all bounded chains in L are finite.

Cn the other hand, we can see that on even a chain C which is dense-in-itself, the set Φ of all congruence relations is not complemented. In fact, let θ be the congruence relation on C such that $a \equiv b(\theta)$ for all $a, b \in[c,+\infty], x \equiv y(\theta)$ for all x, $y \in[-\infty, c)$ and $a \neq x(\theta)$ for any $a \in[c,+\infty]$ and any $x \in[-\infty, c)$, where $C=$ $[-\infty, c) \vee[c,+\infty]$. Now suppose that there exists a complement θ^{\prime} of $\theta: \theta \cup \theta^{\prime}=I$ and $\theta \cap \theta^{\prime}=O$, where $a \equiv b(I)$ holds for all a, b in C, I will be called the unit conguence relation, and $a \equiv b(O)$ holds only when $a=b$, O will be called the zero congruence relation. Thus we have $c \equiv x\left(\theta \cup \theta^{\prime}\right)$ for any $x<c$. therefore there exists a sequence $\left\{x_{i}\right\}$ such that $c=x_{0}, x_{1}, \cdots \cdots, x_{n}=x, x_{i-1} \equiv x_{i}\left(\theta\right.$ or $\left.\theta^{\prime}\right)$. Since $c \equiv x(\theta)$ for $x<c$ we can find the first $x_{j} \in\left\{x_{i}\right\}$ such that $x_{j-1} \geqq c>x_{j}$ and $x_{j_{-1}} \neq x_{j}(\theta)$, and hence $x_{j_{-1}} \equiv x_{j}\left(\theta^{\prime}\right)$ and $x_{j} \equiv c\left(\theta^{\prime}\right)$ because any congruence class is convex. Since C is dense-in-itself, there exists $y \in C: x_{j}<y<c$. And $x_{j} \equiv y\left(\theta^{\prime}\right)$. But $x_{j}, y \in[-\infty, c)$ and $x_{j} \equiv y(\theta)$. Hence $x_{j} \equiv y\left(\theta \cap \theta^{\prime}\right)$, which follows $\theta \cap \theta \neq 0$. It means $\theta^{\prime} \neq$ complement
of θ.
According to the above reason, we consider only the case that all bounded chains are finite in a lattice. The main contents of the paper are as follows. In the first section we shall prove that Φ of a modular lattice in which any bounded chains are finite forms a Boolean algebra. J. von Neumann [2] has proved the above statement for a modular lattice of finite length. In the second section for non-modular lattice we shall find a congruence relation which has its complement congruence relation, and find a necessary and sufficient condition that Φ forms a Boolean algebra. In the third section we define an l-congruence relations on an l-group, and we shall prove that if an l-group is satisfing the chain condition, then all 1-congruence relations forms a sub-Boolean algebra of the Boolean algebra Φ.

2. Congruence relations on a modular lattice.

In the following we shall use the ordinary terminology of [1]. A closed interval (or quotient) $[x, y]$ is called prime if and only if y covers x. Intervals which can be written as $[x \cap y, x]$ and $[y, x \cup y]$ are called transposes, while two quotients $[x, y]$ and $\left[x^{\prime}, y^{\prime}\right]$ are called projective if and only if there exists a finite sequence $[x, y],\left[x_{1}, y_{1}\right], \cdots \cdots,\left[x^{\prime}, y^{\prime}\right]$ in which any two sucessive quotients are transposes, in symbols $[x, y] \sim\left[x^{\prime}, y^{\prime}\right]$. And it is well known that the relation of projectivity between prime intervals is an equivalence relation. Hence we can consider the set P of classes $P \alpha$ of projective prime quotients. And $P \alpha$ shall be called projective class. In this section we shall prove that Φ of a modular lattice in which all bounded chains are finite forms a Boolean algebra, which is some extension of J. von Neumann's result [2]. First of all, we prove the following two lemmas

LEMMA 1. (i) Let L be a modular lattice in which all bounded chains are finite, $P \propto$ a class of projective prime quotients (i.e. $P \propto \in P$) and θ a congruence relation on L. Then for some $[a, b] \in P \alpha$ if $a \equiv b(\theta)$, then $c \equiv d(\theta)$ for all $[c, d]$ $\epsilon P \alpha$.
(ii) Suppose $[a \cap b, a \cup b]$ is a modular sublattice of L. And let $[a \cap b, b],[a$, $a \cup b]$ be transposes quotients. Then for a maximal chain: $a \cap b<x_{1}<x_{2}<\cdots x_{n_{-1}}<b$ connecting $a \cap b$ to b, there exists a maximal chain: $a<x^{\prime}{ }_{1}<x^{\prime}{ }_{2}<\cdots<x^{\prime} n_{-1}<a \cup b$ connecting a to $a \cup b$ such that $\left[x_{i}, x_{i+1}\right] \sim\left[x^{\prime} i, \quad x^{\prime} i_{+1}\right]$.

PROOF. (i) is obvious.
For (ii), we are well known [1] that the correspondence: $x \rightarrow a \cup x$ is isomorphism between $[a \cap b, b]$ and $[a, a \cup b]$. Since the chain $a \cap b<x_{1}<\cdots<x_{n_{-1}}<b$ is maximal which means x_{i+1} covers x_{i}, the chain $a<x_{1} \cup a<\cdots<x_{n_{-1}} \cup a<b \cup a$ is also maximal. And $\left[x i, x i_{+1}\right] \sim\left[x i \cup a, x_{i+1} \cup a\right]$. In fact,

$$
x_{i+1} \cap\left(x_{i} \cup a\right)=x_{i} \cup\left(x_{i+1} \cap a\right)=x_{i} \cup\left\{\left(x_{i+1} \cap b\right) \cap a\right\}=x_{i} \cup(b \cap a)=x_{i} .
$$

LEMMA 2. Under the same hypotheses of lemma I, for a chain γ connecting a to b, let S be the set of projective classes having at least one prime quotient in r. Then any prime quotient in any chain connecting a to b belongs to some $P \propto$ in S.

PROOF. If chain $\gamma: a=x_{0}<x_{1}<\cdots<x_{m}=b$ has length m, then by Jordan-Dedekind chain condition every maximal chain cennecting a to b has length m. So let r^{\prime} : $a=y_{0}<y_{1}<\cdots<y_{m}=b$ be any other maximal chain connesting a to b. Using induction on m, we are going to prove the lemma. If $m=1$, then the lemma is obvious. We assume the lemma holds for all $m \leqq n-1$. For the case $m=a$, if $x_{1}=y_{1}$ then lemma also holds by the hypothese of induction. Suppose $x_{1} \neq y_{1}$. Since x_{1} and y_{1} cover $a, u=x_{1} \cup y_{1}$ covers x_{1} and y_{i} by the covering condition. Since each [x_{1}, x_{2}], $\cdots \cdots,\left[x_{n-1}, x_{n}\right] \in$ some $P a$ in S, the hypothese leads also $\left[x_{1}, u\right] \in$ some $P \alpha$ in S, and so is any prime quotient in $[u, b]$. Because of $\left[a, x_{1}\right] \sim\left[y_{1}, u\right],\left[y_{1}, u\right] \epsilon$ some $P \alpha$ in S. Hence each $\left[y_{1}, y_{2}\right], \cdots \cdots,\left[y_{n_{-1}}, y_{n}\right] \in$ some $P \alpha$ in S. Since $\left[a, y_{1}\right] \sim\left[x_{1}, u\right]$, it follows each $\left[a, y_{1}\right],\left[y_{1}, y_{2}\right], \cdots \cdots,\left[y_{n-1}, y_{n}\right] \in$ some $P \alpha$ in S.

Now we prove the following main lemma

LEMMA 3. Let L be a modular lattice in which all bounded chain are finite, and 6 songruence relation on L. Then there exists a complement congruence relation θ^{\prime} of $\theta: \partial \cap \theta^{\prime}=O$ and $\theta \cup \theta^{\prime}=I$.

PROOF. Let S_{1} be the set of projective classes having at least one prime quotient which is in the quotient $[a \cap b, a \cup b]$ for some $a \equiv b(\theta)$, and P the set of all projective classes on L. Set $S_{2}=P-S_{\mathrm{⿺}}$. We define a new congruence relation θ^{\prime} as following: $x \equiv y\left(\theta^{\prime}\right)$ if and only if either $x=y$ or any prime quoutient in the
quotient $[x \cap y, x \cup y] \in$ some $P a$ in S_{2}, Then we can see that the relation θ^{\prime} is a congruence relation, moreover $\theta \cap \theta^{\prime}=O$ and $\theta \cup \theta^{\prime}=I$. For, from the definition we have directly that θ^{\prime} is reflexive and symmetric. Next for the transitivity, we suppose $x \equiv y\left(\theta^{\prime}\right)$ and $y \equiv z\left(\theta^{\prime}\right)$, i. e. for all prime quotients J in $[x \cap y, x \cup y$] or in $[y \cap z, y \cup z], J \in$ some $P \alpha$ in S_{2}. Since

$$
[x \cap y, x \cup y] \supset[x \cap y, \quad(x \cap y) \cup(y \cap z)] \sim[x \cap y \cap z, \quad y \cap z],
$$

by (ii) of lemma 1, we have that all prime quotients $J \in[x \cap y \cap z, y \cap z]$ implies $J \in$ some $P \alpha$ in S_{2}. Dually, any prime quotient $J \in[y \cup z, x \cup y \cup z]$ implies $I \in$ some P_{α} in S_{2}. Since

$$
\begin{aligned}
& {[x \cap y \cap z, y \cap z] \vee[y \cap z, \quad y \cup z] \vee[y \cup z, x \cup y \cup z]} \\
& \subset[x \cap y \cap z, x \cup y \cup z],
\end{aligned}
$$

we see that there exists a chain γ connecting $x \cap y \cap z$ to $x \cup y \cup z$ such that any prime quotient of $\gamma \in$ some $P \alpha$ in S_{2}. Hence by lemma 2 it follows that any prime quotient J in $[x \cap y \cap z, x \cup y \cup z]$ is contained in some $P \alpha$ in S_{2}. And so is any prime quotient in $[x \cap z, x \cup z]$, which follows $x \equiv z\left(\theta^{\prime}\right)$. Hence the the relation θ^{\prime} is transitive. Now we will see that the substitute property of θ^{\prime} holds. It is sufficient to show that

$$
x \equiv y\left(\theta^{\prime}\right) \text { implies } x \cup z \equiv y \cup z\left(\theta^{\prime}\right) \text { and } x \cap z \equiv y \cap z\left(\theta^{\prime}\right)
$$

for any $z \in L$. Suppose $x \equiv y\left(\theta^{\prime}\right)$ i. e., for any prime quotient J in $[x \cap y$, $x \cup y] \in$ some $P \alpha$ in S_{2}. Since

$$
\begin{aligned}
& {[x \cap y \cap z, \quad(x \cap z) \cup(y \cap z)] \subset[x \cap y \cap z, \quad(x \cup y) \cap z]} \\
& \sim[x \cap y, \quad(x \cap y) \cup\{(x \cup y) \cap z\}] \subset[x \cap y, \quad x \cup y],
\end{aligned}
$$

it follows that any prime quotient in

$$
[x \cap y \cap z,(x \cap z) \cup(y \cap z)]=[(x \cap z) \cap(y \cap z),(x \cap z) \cup(y \cap z)]
$$

is contained in some $P \alpha$ in S_{2}. Hence $x \cap z \equiv y \cap z\left(\theta^{\prime}\right)$. And dually we see $x \cup z \equiv y \cup z\left(\theta^{\prime}\right)$. This concludes θ^{\prime} is a congruence relation on L. Finally we prove that $\theta \cap \theta^{\prime}=0$ and $\theta \cup \theta^{\prime}=I$. In fact, if $a \equiv b(\theta)(a \neq b)$, i. e., any prime quotient in $[a \cap b, a \cup b]$ is contained in some $P \alpha$ in S_{1}. Since $S_{2}=P-S_{\mathrm{I}}$, we have $a \neq b\left(\theta^{\prime}\right)$. Hence it leads to $\theta \cap \theta^{\prime}=O$. Next for any $a, b \in L,[a \cap b, a \cup b]$ is a bounded chain. Therefore there exists a maximal chain: $a \cap b<x_{1}<x_{2}<\cdots<$ $a \cup b$ of finite length. While $x i-1 \equiv x i\left(\theta\right.$ or $\left.\theta^{\prime}\right)$ we have $a \cap b \equiv a \cup b\left(\theta \cup \theta^{\prime}\right)$. This leads to $a \equiv b\left(\theta \cup \theta^{\prime}\right)$, which shows $\theta \cup \theta^{\prime}=I$.

Hence we have the following theorem

THEOREM 1. Let L be a modular lattice in which all bounded chains are finite. Let $\Phi=\{\theta \mid \theta$ is congruence relation on $L\}$. Then Φ forms a Boolean algebra. Moreover $\Phi \cong 2^{p}$, where P is the set of all projective classes of prime qutients on L.

PROOF. We are well known Φ is distributive, and complemented by the lemma 3 . Thus Φ is Boolean algebra. In the lemma 1 and the prove of lemma 3 it is established that for some congrucnce relation θ there exists one and only one subset S of P, and converse. It is evident that $\theta_{1} \leqq \theta_{2}$ if and only if $S\left(\theta_{1}\right) \leqq S\left(\theta_{2}\right)$ in P, where $S\left(\theta_{i}\right)$ is the subset of P corresponding to the congruence relation θ_{i}.

3. Congruence relations on non-modular lattice.

In this section we consider the set Φ of all congruence relations on non-modular lattice L.
Y. Mayeta [3] has defined the following quotient ideal:

DEFINITION. Let L be a lattice and N the set of qoutients of L is called quotient ideal if and only if N satisfies the followings.
(i) For any $a \in L[a, a] \in N$.
(ii) For any $[a, b] \in N,[x, y] \subset[a, b]$ implies $[x, y] \in N$.
(iii) For any $[a, b] \in N,[a, b] \sim[x, y]$ implies $[x, y] \in N$.
(iv) $[a, b],[b, c] \in N$ implies $[a, c] \in N$.

And for a congruence relation θ a quotient $[a, b]$ is called nullized by θ if $a \equiv b$ (θ). He also has proved that if N is a quotient ideal in L, then there exists a congruence relation θ such that N is equal to the set of all quotients which are nullized by the θ. It is well known that if L is non-modular lattice, then L contains a sublattice isomorphice to the five-element lattice of Fig. 1, and a sublattice $M=[z, u]$ in L is called non-modular subset. A quotient $[x, y]$ shall be said non-modular quotient if there exists a finite sequence $\left\{z_{i}\right\}: x=z_{0}<z_{1}<\cdots<z n=y$ such that either

Fig. 1.

$$
\left[z_{i-1}, z_{i}\right] \sim\left[\alpha_{i}, \beta_{i}\right] \quad \text { or }\left[z_{i-1}, z_{i}\right] \subset\left[\alpha_{i}, \beta_{i}\right]
$$

for $\alpha_{i}, \beta_{i} \in$ some non-modular subset of L . A quotient $\left[\begin{array}{ll}a, b\end{array}\right]$ shall be said to be chain connected to $[c, d]$ when there exists a finite series of quotients $\left[x_{i}, y_{i}\right]$ such that

$$
[a, b] \sim(\text { or } \subset)\left[x_{1}, y_{1}\right] \sim\left(\text { or C) }\left[x_{2}, y_{2}\right] \sim(\text { or C) } \cdots \sim(\text { or C) }[c, d]\right.
$$

Now let N be the set of all quotients $[a, b]$ which is chain connected to as quotient $[c, d]$ having a finite series of quotients $\left[c, u_{1}\right],\left[u_{1}, u_{2}\right], \cdots,\left[u_{m-1}, d\right]$ such that after finite chain connecting steps each $\left[u_{i-1}, w_{i}\right]$ is finally chain connected to some non-modular quotient.

If we allow that $[a, a] \in N$ for any $a \in L$, it then is easily seen that N forms a quotient ideal in L.

By the result of Y. Mayeta, we can find the congruence relation ξ such that N is equal to the set of all quotients which are nullized by the ξ.

Evidently $\alpha \equiv \beta(\xi)$ for $\alpha, \beta \in$ any non-modular subset. This congruence relation ξ is called modularlized.

Let L / ξ be the quotient lattice of L by ξ, i. e., the set of all congruence classes by ξ. Then L / ξ is clarely a modular lattice, if one defines $\overline{x \cup y}=\bar{x} \cup \bar{y}, \overline{x \cap y}=$ $\bar{x} \cap \bar{y}$, where \bar{x} is the congruence class containing x.

Now we can prove the following.
LEMMA 4. Let L be non-modular lattice in which any bounded chain is finite, and ξ the modularlized congruence relation of L. Then there exists a complement congruence relation ξ^{\prime} of ξ.

PROOF. Let S_{1} le the set of projective classes having at least one prime quotient in $[a \cap b, a \cup b]$ for some $a \equiv b(\xi)$ and P the set of all projective classes of prime quotient on L. Set $S_{2}=P-S_{1}$. And we define a net congruence relation ξ^{\prime} as following: $x \equiv y\left(\xi^{\prime}\right)$ if and only if either $x=y$ or any prime quotient in $[x \cap y$, $x \cup y] \in$ some $P \alpha$ in S_{2}, where $P \alpha$ is a projective class of prime quotients of L. If any prime quotient in $[x \cap y, x \cup y] \in$ some $P \alpha$ in S_{2}, then we can see: the quotient $[x \cap y, x \cup y]$ is a modular sublattice of L. For, if there exists a non-modular subset M in $[x \cap y, x \cup y]$, then we can find a projective class P_{α} in S_{2} having a prime quotient $[\alpha, \beta]$ for $\alpha, \beta \in M$. But on the other hand, since $\alpha \equiv \beta$ (ξ), we have $P_{\alpha} \in S_{1}$, which is unreasozable. Hence the quotient $[x \cap y, x \cup y]$ is a modular sublattice of L, Therefore we see that in the modular sublattice $[x \cap y$,
$x \cup y]$, lemma 1 and 2 are satisfied. Thus by a similar way as was done in the proof of lemma 3 , we are easily seen that ξ^{\prime} is a congruence relation, moreover $\xi \cap \xi^{\prime}=O$ and $\xi \cup \xi^{\prime}=I$.

It is easily seen that if a congruence relation θ in L satisfies $\alpha \equiv \beta$ (θ) for all $\alpha, \beta \in$ any non-modular subset in L, then $\theta \geqq \xi$.

And we can prove:

LEMMA 5. Let Ψ be the set of all congruence rlations θ such that $\alpha \equiv \beta$ (θ) for all $\alpha, \beta \in$ any non-modular subsct in L, and Φ / ξ the set of all congruence relations defined on the quotient lattice L / ξ by ξ. Then Ψ is isomorphic to Φ / ξ.

PROOF. For any $\theta \in \Psi$, clearly $\xi \leqq \theta$, i. e., $x \equiv y(\xi)$ implies $x \equiv y(\theta)$. If $a \equiv b(\xi)$ in L, then $a=\bar{b}$ in L / ξ. Now we defined a new relation $\bar{\theta}$ on L / ξ as following: $a \equiv \bar{b}(\theta)$ in L / ξ if and only if $a \equiv b(\theta)$ for some $a \in \bar{a}$ and $b \in \bar{b}$. Then we are easily seen that θ is a congruence relation on L / ξ. Set $\bar{\theta}=f(\theta)$. Then f is one-to-one. For, for $\theta, \eta_{f} \in \Psi(\theta \neq \eta)$, there is a pair a, b in L such that cither.
(i) $a \equiv b(\theta)$ and $a \neq b(\eta)$ i. e., $a \cap b \equiv a \cup b(\theta)$ and $a \cap b \equiv a \cup b(\eta)$
or (ii) $a \equiv b(\theta)$ and $a \equiv b(\eta)$ i. e., $a \cap b \equiv a \cup b(\theta)$ and $a \cap b \equiv a \cup b(\eta)$
For the case (i), since $a \cap b \equiv a \cup b(\eta)$ there exists a prime quotient [x, y] in $[\mathrm{a} \cap b, a \cup b]$ such that $x \neq y(\eta)$, which means $\bar{x} \neq \bar{y}\left(\eta_{f}\right)$. On the other hand, $x \equiv y(\theta)$, which means $\bar{x} \equiv \bar{y}(\theta)$.

Hence $\bar{\theta} \neq \bar{\eta}$ i. e., $f(\theta) \neq f(\eta)$. The order preservings of f and f^{-1} is almost tricial.

Thus by theorem 1 we know that Φ / ξ is to be a Boolean algebra because L / ξ is a modula: lattice. Hence Ψ is also a sub-Boolean algebra with zero element $\bar{\xi}$ and unit elenent I in Φ.

Now we shall prove that any $\theta \in \Psi^{\prime}$ has its complement congruence relation θ^{\prime} in Φ.

Let θ be any congruence relation in Ψ. There exists a complement congruence
relation $\bar{\theta}$ of $\bar{\theta}$ on Φ / ξ. So we can find η in Ψ such that $f\left(\eta_{i}\right)=\bar{\theta}^{\prime}$, where $\bar{\theta}=f(\theta)$. Setting $\theta^{\prime}=\eta \cap \xi^{\prime}$, we can see: θ^{\prime} is a complement of θ in Φ. In fact, we first prove $\theta \cap \theta^{\prime}=O$ in Φ. It suffices to show that $x \neq y\left(\theta \cap \theta^{\prime}\right)$ for any prime quotient $[x, y]$. If $x \equiv y(\xi)$, then $x \neq y$ (ξ^{\prime}) i. e., $x \equiv y\left(\theta^{\prime}\right)$ which follows $x \equiv y\left(\theta \cap \theta^{\prime}\right)$. If $x \not \equiv y(\xi)$, then we have the following two cases:

$$
\text { (i) } x \equiv y(\theta) \text { and (ii) } x \equiv y(\theta)
$$

For (i), we have $\bar{x} \equiv \bar{y}(f(\theta))$. Since $\bar{x} \neq \bar{y}$ in L / ξ, we can see: $x \neq y$ (η) Thus $x \neq y\left(\theta \cap \theta^{\prime}\right)$. For (ii), we have immediately $x \neq y\left(\theta \cap \theta^{\prime}\right)$. Next we prove $\theta \cup \theta^{\prime}=I$. Since Φ is distributive we have

$$
\theta \cup \theta^{\prime}=(\theta \cup \eta) \cap\left(\theta \cup \xi^{\prime}\right)
$$

For any a and $b \in L$, let $a \cap b=a_{0}<a_{1}<\cdots \cdots<a m=a \cup b$ be a maximal chain connecting $a \cap b$ and $a \cup b$.

If $a_{i-1} \equiv a i(\theta)$, then $a_{i-1} \equiv a_{i}((\theta \cup \eta) \cap(\theta \cup \xi))$. If $a_{i-1} \equiv a_{i}(\theta)$ for some i, then $\bar{a}_{i_{-1}} \equiv \bar{a}_{i}(f(\theta))$ in L / ξ which follows $a_{i-1} \equiv a_{i}(\eta)$. While $a_{i-1} \equiv a_{i}(\theta)$, we have $a_{i-1} \equiv a_{i}(\xi)$ i. e. , $a_{i-1} \equiv a_{i}\left(\xi^{\prime}\right)$ because $a i$ covers a_{i-1}. Hence $a_{i-1} \equiv a_{i} \quad((\theta \cup \eta) \cap$ $\left.\left(\theta \cup \xi^{\prime}\right)\right)$ for any i. It follows $a \equiv b\left((\theta \cup \eta) \cap\left(\theta \cup \xi^{\prime}\right)\right)$, which completes the proof.

Hence we have the following theorem

THEOREM 2. Let L be non-modular lattice in which all bounded chains are finite, and Ψ the set of all congruence relations by which all elements of each non-modular subset are nullized. Then for any $\theta \in \Psi$, there exists a complement of θ in Φ, and moreover $\Psi \cong 2^{Q}$, where Q is the set of all projective classes of the quotient lattice L / ξ. Conversely, let Ψ^{\prime} be the set of each complement of $\theta \in \Psi$. Then each $\eta \in \Phi-\left(\Psi \vee \Psi^{\prime}\right)$ has not its complement.

Now we shall show the converse of the theorem. First of all, we give the following obvious lemma:

LEMMA 6. (i) Let θ be a congruence relation on a lattice L, and S a sublattice of L, then the contraction $[\theta]$ of θ on S is also a congruence relation of S.
(ii) If θ^{\prime} is a complement of θ on L, th2n $\left[\theta^{\prime}\right]$ is also a complement of the $[\theta]$ on S.

Let η be any congruence relation of L in $\Phi-\left(\Psi \vee \Psi^{\prime}\right)$. Since L is non-modular lattice, there exists at least one sublattice S isomorphic to the five-element lattice of Fig. 1. Thus the contraction [η] of η on S is a congruence relation of S. Clearly the $[\eta]$ is not trivial congruence relations (O or I) on S. Thus [η] is either

$$
\begin{aligned}
& (\alpha) a \equiv b \equiv z([\eta]), x \equiv u([\eta]) \text { and } a \equiv x([\eta]) \\
& \text { or }(\beta) u \equiv a \equiv b([\eta]), x \equiv z([\eta]) \text { and } x \equiv u([\eta]) \text { on Fig. } 1
\end{aligned}
$$

Suppose there exists a complement η^{\prime} of η on L. Then [η^{\prime}] is a complement of [$\left.\eta_{\eta}\right]$ on S. But [$\left.\eta^{\prime}\right]$ is neither (α) nor (β).

THEOREM 3. In non-modular lattice in which all bounded chains are finite, Φ is a Boolean algebra if and only if $\Phi=\Psi \vee \Psi^{\prime}$.

3. L-ideals and 1-congruence relations

In this section we shall denote by L an l-group [1].

LEMMA 7. Let L be an l-group which satisfies the chain condition [1]. Then in L any bounded chain is finite

PROOF. Let γ be a chain connecting a to b. By the theorem 21 (in [1], p. 236) L is commutative and a and b are expressed uniquely as a sum of integeral multiples of finite number of distinct primes:

$$
a=m_{1} p_{1}+m_{2} p_{2}+\cdots \cdots+m_{r} p r, \quad b=n_{1} p_{1}+n_{2} p_{2}+\cdots \cdots+n_{s} p_{s}
$$

Where $r \leqq s$ and $n i-m i \geqq 0, p_{i}$ is a prime in L.
Hence the length of $r \leqq$

$$
\left(n_{1}-m_{1}\right)+\left(n_{2}-m_{2}\right)+\cdots \cdots+\left(n_{r}-m_{r}\right)+n_{r_{+1}}+\cdots \cdots+n_{s}
$$

COROLLARY. Let L be an l-group which satisfies the chain condition, and Φ the set of all congruence relations defined on L. Then Φ forms a Boolean algebra.

A congruence relation θ of L is called an l-congruence relation if and only if $a \equiv b(\theta)$ and $c \equiv d(\theta)$ imply $a+c \equiv b+d(\theta)$. And by an l-ideal a of L is meant a normal subgroup of L in which $a, b \in \mathcal{O}$ and $a \cap b \leqq x \leqq a \cup b$ imply $x € \alpha$.

Clearly we can see:

$$
\Psi=\{\theta \mid \theta \text { is l-congruence relation }\} \cong\{o t \mid \text { ot is } 1 \text {-ideal }\}
$$

LEMMA 8, Let L be an l-group which satisfis the chain condition, and Q the set of prime quotient whose form is $[n p,(n+1) p]$ for any prime p and an integer n. Then P and Q are one-to-one, where P is the set of all projective classes of prime quotients of L.

PROOF. It is well known that b covers a if and only if for $a=n p+m q+\cdots+l r$, $b=(n+1) p+m q+\cdots+l r$ or $b=n p+(m+1) q+\cdots+l r$ or \cdots or $b=n p+m q+\cdots+(i+1) r$. where n, m, \cdots, l are integers and p, q, \cdots, l prims. And we are easily seen that $[n p,(n+1) p] \sim[a, b]$ (projective) if and only if $a=n p+s$ and $b=(n+1) p+s$ $(p \in s)$. Therefore a projective class P_{α} of prime quotients containing $[n p,(n+1) p]$ is the set of all prime quotients whose form are $[n p+s,(n+1) p+s]$. Thus by the corresponding: $P \alpha(\ni[n p,(n+1) p]) \longrightarrow[n p,(n+1) p], P$ and Q are oneto one.

Denote $[p]=\{[n p,(n+1) p] \mid n=0, \pm 1, \pm 2, \cdots\}$ for some prime p, and $R=\{!p]$, $[q], \cdots \cdots\}$ for all primes p, q, \cdots, in L.

Since l-ideal α is a subgroup of L, it is easy that $p \in C \not$ implies $n p \in C \not$ for $n=0, \pm 1, \pm 2, \cdots \cdots$. Thus all prime quotients in $[p]$ are nullized by the 1 -congrence relation corresponding c. Hence clearly we have $\Phi \cong 2^{Q}$ and $\Psi \cong 2^{R}$.

Hence we have the following theorem

THEOREM 4. Let L be an l-group which satisfies the chain condition, and $\Phi=\{$ all congruence relations $\}, \Psi=\{$ all l-congruence relations $\}$. Then Ψ is a subBoolean algebra of the Boolean algebra Φ, and moreover $\Psi \cong 2^{R}$, where $R=\{$ all primes in $L\}$.

COROLLARY. The set of all l-ideals in L is an atomic complete Boolean algebra. (This corollary was already proved in [1] p.236).

REFERENCES

[1] G. Birkhoff, Lattice Theory, rev. ed. New York (1948)
[2] J. von Neumann, Lectures on Continuous Geometries, Princeton, 1936-37, 2 vols.
[3] Y. Mayeta, Continuous Geometries, Iwanami Japan. (1952).
[4] N. Funayama and T. Nakayama, On the Distributivity of a Lattice of Lattice-Congruences, Proc. Imp. Acad. Tokyo 18(1942).
[5] O.Ore, Theory of equivalence relation, Duke Math. J. Vol. 9 (1942).

