PROJECTIVE MOTIONS IN NON-RIEMANNIAN K*-SPACES I

By Younki Chae

§1. Introduction.

We consider an N-dimensional analytic space A_{N} with a symmetric connection $\Gamma_{j k}^{i} . A_{N}$ is called an $A K_{N}^{*}$-space if its curvature tensor

$$
B_{j k l}^{i}=\Gamma_{j l, k}^{i}-\Gamma_{j k, l}^{i}+\Gamma_{j l}^{h} \Gamma_{h k}^{i}-\Gamma_{j k}^{h} \Gamma_{h l}^{i}
$$

satisfies the relation
(1. 1) $B_{j k l: m}^{i}=B_{j k l}^{i} K_{m}$,
where a comma means ordinary partial differentiation with respect to coordinates, a semi-colon denotes covariant differentiation with respect to $\Gamma_{j k}^{i}$ and K_{m} a non-zero vector. In this paper, the author will discuss the projective motion of torse-forming form, in $A K_{N}^{*}$-space, defined by
(1. 2) $\quad \bar{x}^{i}=x^{i}+v^{i}(x) d t, \quad v_{: j}^{i}=\rho(x) \delta_{j}^{i}+\phi_{j}(x) v^{i}(x)$
where $\rho(x)$ means any function of x and ϕ_{j} denotes a certain covariant vector.
In what follows, we assume the existence of projective motion of the torse-forming form (1.2), that is, we assume the condition
(1. 3) $\quad £ \Gamma_{j k}^{i}=\delta_{j}^{i} \Psi_{k}+\delta_{k}^{i} \Psi_{j}$, or $\quad v_{i j ; k}^{i}=B_{j k}^{i} v^{l}+\delta_{j}^{i} \Psi_{k}+\delta_{k}^{i} \Psi_{j}$
which is the necessary and sufficient condition that the vector $v^{i}(x)$ defines a projective motion, where the symbol $£$ means the Lie derivative with respect to $v^{i}(x)$ and $\Psi_{j}(x)$ is a certain non-zero vector.

We introduce a quantity $\Pi_{j k}^{o}$ by

$$
\begin{equation*}
\Pi_{j k}^{o}=-\frac{1}{N^{2}-1}\left(N B_{j k}+B_{k j}\right), \quad B_{j k}=B_{j k h}^{h} . \tag{1.4}
\end{equation*}
$$

Then we can obtain Wyle's projective curvature tensor $P_{j k l}^{i}$ of the form:

$$
\begin{equation*}
P_{j k l}^{i}=B_{j k l}^{i}+\Omega_{j k l}^{i}, \tag{1.5}
\end{equation*}
$$

where we have put
(1. 6) $\quad \Omega_{j k l}^{i}=\delta_{l}^{i} \Pi_{j k}^{o}-\delta_{k}^{i} \Pi_{j l}^{o}-\delta_{j}^{i} \Pi_{k l}^{o}+\delta_{j}^{i} \Pi_{l k}^{o}$.

If we introduce an other quantity $P_{j k l}^{o}$ by
(1. 7) $\quad P_{j k l}^{o}=\Pi_{j k ; l}^{o}-\Pi_{j l: k}^{o}$,
the well known equation $£ B_{j k l}^{i}=\left(£ \Gamma_{j k}^{i}\right)_{; l}-\left(£ \Gamma_{j l}^{i}\right)_{: k}$ gives
(1. 8)

$$
£ \Pi_{j k}^{o}=v^{m} \Pi_{j k ; m}^{o}+v_{: k}^{m} \Pi_{j m}^{o}+v_{: j}^{m} \Pi_{m k}^{o}=\Psi_{j: k} .
$$

It is known [1] that the integrability condition of (1.3) is
(1. 9)
(i) $£ P_{j k l}^{i}=£ B_{j k l}^{i}+\delta_{l}^{i} \Psi_{j: k}-\delta_{k}^{i} \Psi_{j: l}-\delta_{j}^{i} \Psi_{k: l}+\delta_{j}^{i} \Psi_{l: k}=0$,
(ii) $£ P_{j k l}^{0}=-\Psi_{h} P_{j k l}^{h}$.

§2. Projective motion and two cases.

In order to discuss the projective motion of torse-forming form, we recall the following lemma which has proved by K. Takano [2]:

LEMMA. If an $A K_{N}^{*}$-space ($N \geqq 3$) admits an infinitesimal projective motion, the motion should be of the form:

$$
\bar{x}^{i}=x^{i}+v^{i}(x) d t, \quad £ \Gamma_{j k}^{i}=\delta_{j}^{i} \Psi_{k}+\delta_{k}^{i} \Psi_{j}, \quad \Psi_{k}=\frac{1}{N-2} £ K_{k} .
$$

It follows from the above Lemma that the equation (1.3) may be rewritten in the form:

$$
\begin{align*}
v_{: j: k}^{i}=B_{j k l}^{i} v^{l}+\frac{1}{N-2} & \left(\delta_{j}^{i}\left[v^{a} K_{k ; a}+\rho K_{k}+v^{a} K_{a} \phi_{k}\right]\right. \tag{2.1}\\
& \left.+\delta_{k}^{i}\left[v^{a} K_{j ; a}+\rho K_{j}+v^{a} K_{a} \phi_{j}\right]\right) .
\end{align*}
$$

Differentiating (1.2) covariantly, we obtain

$$
v_{: j: k}^{i}=\phi_{j: k} v^{i}+\phi_{j} \phi_{k} v^{i}+\rho_{k} \delta_{j}^{i}+\rho \phi_{j} \delta_{k}^{i}
$$

Substituting this equation into (2.1), we have
(2. 2)

$$
\begin{aligned}
B_{j k l}^{i} v^{l}= & \phi_{j: k v^{i}+\phi_{j} \phi_{k} v^{i}+\rho_{k} \delta_{j}^{i}+\rho \phi_{j} \delta_{k}^{i}} \\
& -\frac{1}{N-2}\left(\delta_{j}^{i}\left[v^{a} K_{k ; a}+\rho K_{k}+v^{a} K_{a} \phi_{k}\right]+\delta_{k}^{i}\left[v^{a} K_{j: a}\right.\right. \\
& \left.\left.+\rho K_{j}+v^{a} K_{a} \phi_{j}\right]\right) .
\end{aligned}
$$

The identity. $B_{j k l}^{i} v^{k} v^{l}=0$ gives the following equation by means of (2.2):
(2. 3) $\quad \phi_{j: k} v^{i} v^{k}+\phi_{j} \phi_{k} v^{i} v^{k}+\rho_{k} v^{k} \delta_{j}^{j}+\rho \phi_{j} v^{i}$

$$
\begin{aligned}
& -\frac{1}{N-2}\left(\delta_{j}^{i}\left[K_{k: a} v^{k} v^{a}+\rho K_{k} v^{k}+v^{a} K_{a} \phi_{k v}^{k}\right]\right. \\
& \left.+v^{i}\left[v^{a} K_{j: a}+\rho K_{j}+v^{a} K_{a} \phi_{j}\right]\right)=0 .
\end{aligned}
$$

Contraction of $i=j$ gives
(2. 3) ${ }_{\mathrm{l}}$

$$
\begin{aligned}
\phi_{j: k} v^{j} v^{k} & +\phi_{j} \phi_{k} v^{j} v^{k}+N \rho_{j} v^{j}+\rho \phi_{j} v^{j} \\
& =\frac{N+1}{N-2}\left(K_{j: a} v^{j} v^{a}+\rho K_{j} v^{j}+v^{a} K_{a} \phi_{j} v^{j}\right) .
\end{aligned}
$$

Multiplying v^{j} to the equation (2.3) and summing over j, we get the following equation for non-zero vector v^{i} :
(2. 3) ${ }_{2}$

$$
\begin{aligned}
\phi_{j: k} v^{j} v^{k} & +\phi_{j} \phi_{k} v^{j} v^{k}+\rho_{j} v^{j}+\rho \phi_{j} v^{j} \\
& =\frac{2}{N-2}\left(K_{\left.j: a v^{j} v^{a}+\rho K_{j} v^{j}+v^{a} K_{a} \phi_{j} v^{j}\right) .} .\right.
\end{aligned}
$$

Comparing these two equations, we have
(2. 4) $\quad(N-2) \rho_{j} v^{j}=K_{j: a} v^{j} v^{a}+\rho K_{j} v^{j}+v^{a} K_{a} \phi_{j} v^{j}$.

Substitution of (2.4) into (2.3) gives, for non-zero v^{i}.
(2. 5)

$$
\phi_{j: k} v^{k}=\frac{1}{N-2}\left(v^{k} K_{j: k}+\rho K_{j}+v^{k} K_{k} \phi_{j}\right)-\phi_{j} \phi_{k} v^{k}-\rho \phi_{j} .
$$

Multiplying v^{j} to the equation (2.5) and summing over j, we have
$(2.5)^{\prime}$

$$
\phi_{j: k} v^{j} v^{k}=\rho_{j} v^{j}-\rho \phi_{j} v^{j}-\phi_{j} v^{j} \phi_{k} v^{k} .
$$

Differentiating (2.4) convariantly, we have

$$
\begin{aligned}
& (N-2) \rho_{a ; j} v^{a}+(N-2)\left(\rho \rho_{j}+\rho_{a} v^{a} \phi_{j}\right)=K_{a ; b ; j} v^{a} v^{b} \\
& +\rho K_{j ; b} v^{b}+K_{a ; b} v^{a} v^{b} \phi_{j}+\rho K_{a ; j} v^{a}+K_{a ; b} v^{a} v^{b} \phi_{j}+K_{a} v^{a} \rho_{j} \\
& +\rho K_{a ; j} v^{a}+\rho^{2} K_{j}+\rho K_{a} v^{a} \phi_{j}+\rho K_{j} \phi_{a} v^{a}+v^{a} K_{a} v^{b} \phi_{b} \phi_{j} \\
& +K_{a ; j} v^{a} \phi_{b} v^{b}+v^{a} K_{a} \phi_{b ; j} v^{b}+\rho K_{a} v^{a} \phi_{j}+v^{a} K_{a} v^{b} \phi_{b} \phi_{j} .
\end{aligned}
$$

Multiplying v^{j} and making use of (2.5)' and (2.4), we obtain

$$
\begin{align*}
& (N-2) \rho_{a ; b} v^{a} v^{b}-K_{a ; b: c} v^{a} v^{b} v^{c} \tag{2,6}\\
& =2 K_{a ; b} v^{a} v^{b} \phi_{c} v^{c}+2 \rho K_{a ; b} v^{a} v^{b}+2 \rho_{a} v^{a} K_{b} v^{b} .
\end{align*}
$$

Now, we are going to classify the projective motion by using above results. Contraction of $i=k$ in the equation (2.2) gives

$$
B_{j h l}^{h} v^{l}=\phi_{j: h^{2}}+\phi_{h} v^{h} \phi_{j}+\rho_{j}+N \rho \phi_{j}-\frac{N+1}{N-\tilde{2}}\left(v^{a} K_{j: a}+\rho K_{j}+v^{a} K_{a} \phi_{j}\right) .
$$

Comparing this equation with (2.5), we get
(2. 7)

$$
B_{j h l}^{h} v^{l}=\rho_{j}+(N-1) \rho \phi_{j}-\frac{N}{N-2}\left(v^{a} K_{j: a}+\rho K_{j}+v^{a} K_{a} \phi_{j}\right)
$$

Differentiating (2.7) covariantly, we have

$$
\begin{aligned}
& \left(K_{m}+\phi_{m}\right) B_{j h l}^{h} v^{l}+\rho B_{j h m}^{h}=\rho_{j: m}+(N-1) \rho_{m} \phi_{j}+(N-1) \rho \phi_{j: m} \\
& -\frac{N}{N-2}\left(\rho K_{j: m}+\phi_{m} K_{j: a^{a}}+v^{a} K_{j: a ; m}+\rho_{m} K_{j}+\rho K_{j: m}\right. \\
& \left.+\rho K_{m} \phi_{j}+v^{a} K_{a} \phi_{m} \phi_{j}+v^{a} K_{a ; m} \phi_{j}+v^{a} K_{a} \phi_{j: m}\right)
\end{aligned}
$$

Multiplying both hand sides of the above by $v^{j} v^{m}$ and summing over j and m, it follows from (2.5)' and (2.6) that

$$
\begin{equation*}
\rho_{j: m v^{j}} v^{m}+\left(K_{m} v^{m}+2 \phi_{m} v^{m}+2 \rho\right)\left(\rho \phi_{j} v^{j}-\rho_{j} v^{j}\right)=0 . \tag{2,8}
\end{equation*}
$$

On the other hand, by making use of (2.4) and (2.7), we have

$$
-B_{j v} v^{j} v^{l}=(N-1)\left(\rho \phi_{j} v^{j}-\rho_{j} v^{j}\right)
$$

By the general rule of Lie differentiation and (1.2), we get

$$
£ B_{j k}=B_{j k} v^{a} K_{a}+\rho B_{j k}+v^{a} B_{a k} \phi_{j}+\rho B_{j k}+v^{a} B_{j a} \phi_{k} .
$$

Comparing these two equations, we have

$$
-\left(£ B_{j k}\right) v^{i} v^{k}=(N-1)\left(v^{a} K_{a}+2 \phi_{a} v^{a}+2 \rho\right)\left(\rho \phi_{j} v^{j}-\rho_{j} v^{j}\right)
$$

Substitution of this equation into (1.4) gives

$$
\begin{equation*}
\left(£ \Pi_{j k}^{{ }_{j k}}\right) v^{j} v^{k}=\left(v^{a} K_{a}+2 \phi_{a} v^{a}+2 \rho\right)\left(\rho \phi_{j} v^{j}-\rho_{j} v^{j}\right) \tag{2.9}
\end{equation*}
$$

By using the Lemma of $\S 1$, we have

$$
\begin{aligned}
\Psi_{j: k}= & \frac{1}{N-2}\left(\rho K_{j: k}+K_{j: a} v^{a} \phi_{k}+v^{a} K_{j: a: k}+\rho_{k} K_{j}+\rho K_{j: k}+\rho K_{k} \phi_{j}\right. \\
& \left.+v^{a} K_{a} \phi_{j} \phi_{k}+v^{a} K_{a ; k} \phi_{j}+v^{a} K_{a} \phi_{j: k}\right) .
\end{aligned}
$$

Multiplying both hand sides of the above by $v^{j} v^{k}$, and summing over j and k, it follows from (2.5)' and (2.6) that

$$
\begin{equation*}
\phi_{j: k v^{j}} v^{k}=o_{j: k} v^{j} v^{k} . \tag{2.10}
\end{equation*}
$$

Hence, we have the following equation by combining the equations (1.8), (2.9), (2.10) and (2.8):

$$
\begin{equation*}
\left(K_{m} v^{m}+2 \phi_{m} v^{m}+2 \rho\right)\left(\rho \phi_{j} v^{j}-\rho_{j} v^{j}\right)=0 . \tag{2.11}
\end{equation*}
$$

Therefore we have proved
THEOREM 1. If a general $A K_{N}^{*}$-space admits a projective motion of torseforming form (1.2) ($N \geqq 3$), then there exist two cases:

$$
\text { (i) } \rho \phi_{j} v^{j}-\rho_{j} v^{j}=0, \quad \text { (ii) } \cdot K_{j} v^{j}+2 \phi_{j} v^{j}+2 \rho=0 \text {. }
$$

Differentiating $\rho \phi_{j} v^{j}-\rho_{j} v^{j}=0$ covariantly, we obtain

$$
\begin{equation*}
\rho_{m} \phi_{j} v^{j}+\rho \phi_{j: m} v^{j}+\rho^{2} \phi_{m}=\rho_{j ; m} v^{j}+\rho \rho_{m}, \tag{2.12}
\end{equation*}
$$

in which we have used $\rho \phi_{j} v^{j}--\rho_{j} v^{j}=0$.
Multiplying both sides of (2.12) by v^{m} and making use of (2.5) and
$\rho \phi_{j} v^{j}-\rho_{j} v^{j}=0$ give

$$
\begin{equation*}
\rho^{2} \phi_{j} v^{j}=0 \tag{2,13}
\end{equation*}
$$

Hence, we have
THEOREM 2. The first case of theorem 1 is degenerated into the following two parts again:
(i) $\rho=0$,
(ii) $\phi_{j} v^{j}=0$.

June, 1962
Mathematical Department
Kyungpook University
Taegu, Korea

REFERENCES

[1] K. Yano, Lie derivatives and its applications, Amsterdam (1957).
[2] K. Takano, On projective motion in a space with recurrent curvature, Tensor, New Series, 12 (1962).
[3] K. Takano, Affine motion in non-Riemannian K^{*}-spaces V, Tensor, New Series, 11 (1961).

