ON A CONTINUOUS MAPPING BETWEEN PARTIALLY ORDERED SETS WITH SOME TOPOLOGY

By Tae Ho Choe

1. Introduction and Notations

Let P be a partially ordered set. By the interval topology of P, we mean that defined by taking the closed intervals [a, b], $[-\infty, a]$, and $[a, \infty]$ of P as a sub-base of closed sets. Let f be a mapping of a partially ordered set P_1 into an other partially ordered set P_2 . In this paper, we first obtain a necessary and sufficient condition that f be a continuous in their interval topologies. This condition, stated in theorem 1, can be applied to show that if f is a complete isotone of a complete lattice into a complete lattice, then f is a continuous in their interval topologies.

N. Funayama [2] has introduced an *imbedding operator* ϕ in the family of subsets of *P*, and has defined a *completion* P_{ϕ} of *P* by the imbedding operator ϕ . And he has obtained a lot of interesting results that *P* is imbedded into some complete lattice. In theorem 2 we consider conditions under which *P* is continuousely imbedded into a complete lattice with respect to their interval topologies. T. Naito [3] has introduced the concept of CP-ideal topology. In §3, we shall deal with similar results of §2 with respect to CP-ideal topology.

We shall use I, I_{α} , $I_{\alpha\beta}$, J, J_{α} , $J_{\alpha\beta}$, to denote closed intervals in § 2 and to denote CP-ideals or dual CP-ideals in § 3. We denote the join and the meet of two elements x and y of a lattice by $x \cup y$ and $x \cap y$ respectively, the join and the meet of all elements of a set $\{a_{\alpha} \mid \alpha \in \Delta\}$ by $\sup_{\alpha \in \Delta} a_{\alpha}$ and $\inf_{\alpha \in \Delta} a_{\alpha}$ respectively. $A \lor B$ and

 $\bigvee_{\alpha \in \varDelta} X_{\alpha}$ will be used to denote the set union of two sets A and B, and of sets of

the family $\{X_{\alpha} | \alpha \in \Delta\}$, and $A \land B$ and $\bigwedge_{\alpha \in \Delta} X_{\alpha}$ are the set intersections of them.

Finally, the complement of a set A will be denoted by A^{c} .

2. Interval topology.

We here note that if a subset S of P is a closed set in it's interval topology, then S may be expressed as an intersection of the sets which are unions of a finite number of closed intervals in P:

Tae Ho Choe

$$\dot{S} = \bigwedge_{\alpha} \{ \bigvee_{\beta=1}^{n\alpha} I_{\alpha\beta} \}$$

where $I_{\alpha\beta}$ is the form of [a,b], $[a,+\infty]$, or $[-\infty,b]$. Thus an open subset O in P is expressed as

$$O = \bigvee \{ \bigwedge^{n_{\alpha}} I^{c}_{\alpha\beta} \}$$

Let P be a partially ordered set. A subset S of P is called to be *covered* by a finite closed intervals of P if there exist a finite number of closed intervals I_n

such that $S \subseteq \bigvee_n I_n$.

We first prove the following theorem:

THEOREM 1. Let P_1 and P_2 be two partially ordered sets, and f a mapping of P_1 into P_2 . f is continuous in their interval topologies if and only if for any closed interval J of P_2 and any element x of P_1 such that $x \in f^{-1}(J)$, there exists a covering of $f^{-1}(J)$ by means of a finite number of closed intervals none of which contains x.

PROOF. Suppose that f is a continuous mapping of P_1 into P_2 . And $x \in f^{-1}(J)$ for a closed interval J of P_2 and an element x of P_1 . Since $f^{-1}(J)$ is a closed n_{α}

set in P_1 , it may be expressed as following $f^{-1}(J) = \bigwedge_{\alpha} \{ \bigvee_{\beta=1} I_{\alpha\beta} \}$, where $I_{\alpha\beta}$ is a

closed interval in
$$P_1$$
. Thus $x \notin \bigvee_{\beta=1}^{n_{\alpha_0}} I_{\alpha_0\beta}$ for some α_0 . Moreover $f^{-1}(J) \subseteq \bigvee_{\beta=1}^{n_{\alpha_0}} I_{\alpha_0\beta}$ and

 $x \in I_{\alpha_0\beta}$ $(1 \leq \beta \leq n_{\alpha_0})$. Conversely, for an element x of P_1 , let O_2 be a neighborhood of f(x) in P_2 . It suffices to show that for some open subset O_1 contining x, $O_1 \leq f^{-1}(O_2)$. Thus we may assume that O_2 is an open set in P_2 , which may be expressed as $O_2 = \bigvee_{\alpha \in \beta=1}^{n_{\alpha}} J_{\alpha\beta}^c$, where $J_{\alpha\beta}$ is a closed interval or the empty set or P_2 .

And there exists a closed intervals $J_{\alpha_0\beta}$ such that $f(x) \notin J_{\alpha_0\beta}$, i.e. $x \notin f^{-1}(J_{\alpha_0\beta})$ for some α_0 and all β corresponding to α_0 . By the hypotheses, there are a finite number of closed intervals I_n^β ($\ni x$) such that $f^{-1}(J_{\alpha_0\beta}) \subseteq \bigvee_n I_n^\beta$, i.e. $(\bigvee_n I_n^\beta)^c \subseteq f^{-1}(J_{\alpha_0\beta}^c)$ for

each β . On the other hand, $x \in \bigwedge_{\beta=1}^{n_{\alpha_0}} (\bigvee_n I_n^{\beta})^c \subseteq \bigwedge_{\beta=1}^{n_{\alpha_0}} f^{-1}(J_{\alpha_0\beta}^c) \subseteq f^{-1}(O_2)$, which completes the proof.

11 A continuous mapping

A mapping f of a partially ordered set P_1 into P_2 is called a complete isotone if $\sup_{\alpha \in A} x_{\alpha}$, $\sup_{\alpha \in A} f(x_{\alpha})$ exist and $x = \sup_{\alpha \in A} x_{\alpha}$ implies $f(x) = \sup_{\alpha \in A} f(x_{\alpha})$, and it's dual. α€Δ Theorem 1 can be applied to show the following

COROLLARLY 1. Let f be a complete isotone of a complete lattice P_1 into a complete lattice P_{2} . Then f is continuous in their interval topologies.

PROOF. Let J be a closed interval in P_2 and x an element in P_1 such that $x \notin f^{-1}(J)$. We shall show that there is a closed interval I in P_1 not containing x such that $f^{-1}(J) \subseteq I$. If the set $S = \{y \in P_1 | f(y) \in J\}$ is empty, then we may take the empty set as I. Therefore we may assume that S is non-empty. Let $a = \inf$ S, $b = \sup S$. If we suppose $x \in [a, b]$, then $f(x) \in J$ because f is a complete isotone. It follows that $x \in f^{-1}(J)$ which is contrary. Clearly we see that $f^{-1}(J) \subseteq [a, b]$, which completes the proof.

N. Funayama [2] has defined an imbedding operator ϕ in the family of subsets of a partially ordered set P_A is called ϕ -closed if $\phi(A) = A_A$. All the ϕ -closed sets form a complete lattice P_{ϕ} under set inclusion. P_{ϕ} is called the *completion* of P by the imbedding operator ϕ . And he has proved that if a collection $\Omega = \{A_{\lambda}\}$ of subsets of P satisfies the following conditions: (i) every A_{λ} is an ideal of P, i.e. $a \in A_{\lambda}$ and $x \leq a$ then $x \in A_{\lambda}$, (ii) every principal ideal is a member of Ω , (iii) Ω

is M-complete, i.e. for any subset $\{B_{\lambda}\}$ of Ω , $\wedge_{\lambda}B_{\lambda} \in \Omega$, (iv) $P \in \Omega$, then there

exists an uniquely determined imbedding opertor ϕ on P such that $\Omega = P_{\phi}$. The theorem 2 of [2] says that let ϕ be an imbedding operator on P, then P is imbedded into P_{ϕ} by f; f(a) = (a] (=principal ideal generated by a), where f is O-isomorphism, i.e. $f(a) \ge f(b)$ if and only if $a \ge b$.

The lemma 2 and theorem 2 of [2] and theorem 1 give us the following lemma:

LEMMA 1. Let P be a partially ordered set. If there is a collection Ω satis fying (i) \sim (iv) in P, and if the mapping f: f(a) = (a] of P into Ω satisfies the hypothesis of theorem 1, then P is continuousely imbedded into the complete

lattice P_{ϕ} (= Ω).

Hence, by above lemma 1 and corollarly, we have

THEOREM 2. Under the hypotheses of lemma 1, if g is a complete isotone

12 Tae Ho Choe

of P_{ϕ} into a complete lattice L, then P is continuousely imbedded in L by $g \circ f$ in to L in their interval topologies.

3. CP-ideal topology

In this section, we denote P to be a lattice. An ideal I is said to be a prime ideal if and only if $x \cap y$ implies $x \in I$ or $y \in I$. A prime ideal I is called a CP-ideal

if and only if the following condition holds: if $\{x_{\alpha} | \alpha \in A\} \subseteq I$ and there exists $\sup_{\alpha \in A} x_{\alpha}$, then $\sup_{\alpha \in A} \epsilon I$. Dually, a dual prime ideal and a dual CP-ideal are defined (T. Naito [3]). The union of {all CP-ideals of P}, {all dual CP-ideals of P} and $\{\phi, P\}$ is denoted by $\pounds \mathcal{P}$, where ϕ is the empty set. We recall that the CP-ideal topology of a lattice P is that defined by taking the elements of $\pounds \mathcal{P}$ as a sub-base of closed sets of the space P.

In the same way as in $\S2$, We can prove the following

THEOREM 3. Let P_1 and P_2 be two lattices, and f is mapping of P_1 into P_2 . f is continuous in their CP-ideal topologies if and only if for any member J of $\pounds P$ of P_2 and any element x of P_1 such that $x \notin f^{-1}(J)$ there exists a covering of $f^{-1}(J)$ by means of a finite number of members of $\pounds P$ none of which contains x.

As a corollarly of the theorem 3, we also have

COROLLARLY 2. Let f be a complete isotone of a complete lattice P_1 into a complete lattice P_2 . Then f is a continuous mapping of P_1 into P_2 in their CP-ideal topologies.

PROOF. Let J be a member of $\pounds \mathcal{P}$ of P_2 and x an element in P_1 such that $x \notin f^{-1}(J)$. We shall show that there exists a member I of $\pounds \mathcal{P}$ of P_1 not containing x such that $f^{-1}(J) \subseteq I$. We consider J into three cases:

(i) J is a nonvoid CP-ideal. Let $S = \{y_r \in P_1 | f(y_r) \in J\}$. If $S = \phi$, i.e. $f^{-1}(J) = \phi$ we then take the empty set as I. And we may assume $S \neq \phi$. Set $a = \sup S$. Then (a] is a CP-ideal of P_1 . For, if $u \cap v \in (a]$, then $f(u) \cap f(v) \leq \sup_r f(y_r) \in J$. Thus we have either $f(u) \in J$ or $f(v) \in J$, i.e. $u \in (a]$ or $v \in (a]$. It follows that (a] is a prime ideal. And if $\{x_{\alpha} | \alpha \in \Delta\}$ and there exists $\sup_{\alpha \in \Delta} x_{\alpha}$, then clearly $\sup_{\alpha \in \Delta} x_{\alpha} \in (a]$. Moreover we can see easily: $x \in (a]$ and $f^{-1}(J) \subseteq (a]$.

(ii) J is a nonvoid dual CP-ideal. This is a dual of (i).

A continuous mapping 13

(iii) $J = \phi$. In this case, we may take the empty set as I. This proves our corollarly.

We recall (Funayama. [2]) that if a partially ordered set P is imbedded in a complete lattice L by a mapping θ , θ is called J-density if any element x in L can be represented as a join of elements of $\theta(P)$, that is $x = \sup \theta(a_r)$, where $a_r \in P$. And in [2], he noted that if P is imbedded in L J-densely by θ , then $\theta(a) = \inf_{x \in B} \theta(x)$

$\theta(a_r)$ in L if and only if $a = \inf a_r$ in P.

LEMMA 2. Let a lattice P be imbedded in a complete lattice L J-densely by θ . Suppose that $\{x_{\alpha} \mid \alpha \in \Delta\} \subseteq P$ and there exists $a = \sup_{\alpha \in \Delta} x_{\alpha}$ then $\theta(\alpha) = \sup_{\alpha \in \Delta} \theta(x_{\alpha})$. Then θ is a continuous mapping of P into L in their CP-ideal topologies.

It is sufficient to show that for some CP-ideal J of L, $S = \{x \in P \mid x \in P \mid$ PROOF. $\theta(x) \in J$ is also a CP-ideal of P. In fact, clearly S is a prime ideal of P. And if $\{x_{\alpha} \mid \alpha \in \Delta\} \subseteq S \text{ and there exists } \sup_{\alpha \in A} x_{\alpha} \text{ in } P, \text{ then we have } \sup_{\alpha \in A} x_{\alpha} \in S \text{ because } \theta(\sup_{\alpha \in A} x_{\alpha})$ $(x_{\alpha}) = \sup_{\alpha} \theta(x_{\alpha}) \in J$. Hence S is a CP-ideal of P. And dually. Theorem 2 of [2] and lemma 2 give us the following

THEOREM 4. Let ϕ be an imbedding operator on a lattice, and $\phi^*: \phi^*(a) =$ (a] be the mapping of P into P_{ϕ} such that $\phi^*(x) = \sup_{\alpha} \phi^*(x_{\alpha})$ if $x = \sup_{\alpha \in \Delta} x_{\alpha}$ cxists.

And if f be a complete isotone of P_{ϕ} into a complete lattice L. Then P is continuously imbedded into L in their CP-ideal topologies.

> June, 1962 Mathematical Department Kyungpook University Taegu, Korea

REFERENCES

[1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Coll. Publ. (1948) [2] N. Funayama, Imbedding partly ordered sets into infinitely distributive complete latrices, Tôhoku Math. Jour. Vol.8 (1956) pp. 54-62 [3] T. Naito, Lattices with P-ideal topologies, Tôhoku Math. Jour. Vol. 12 (1960) pp. 235