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The author assumes that pure liquid metal is composed of molecular oscillators whose energy states
are classified into two subgroups, i.e., A and B states, each being accesible to cither one of the
two sorts of lattice sites. The partition function involves constants characteristic of substance, which
are obtainable from the Debye characteristic temperature assigned to its solid state.

Calculation has been made for the various thermedynamic properties such as the vapor pressure,

the entropy, and the heat capacity of liquid metals
from the melting points to the boiling points.

of Group I elements over the temperature range
The theoretical values thus obtained are in good

accordances with those observed, within experimental errvor, although a slight derivation is observed

in the atomic heat capacity.

[. Intreduction

Eyring and Hirschfelder,! and Lennard-Jones
and Dovonshire? have employed the ccll model
in the formulation of theories of the liquid state
that are quite successful interpreting the propert-
ies of simple nonpolar liguids. Kirkwood? has sh-
own how the cell model can be explained by
means of well-defined approximations to the cla-
ssical statistical mechanics of the canonical en-
semble. Recently, Hirai, Ree and Eyring' have
sct up a partition function for the incrt gas based
upon their well-known hole theory. For liquid
metals, Kincaid and Eyring,” and Hirschfelder,
Stevenson and Eyring® have formulated partition
function under the assumption that the constituent
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particles of liquid mercury are monatomic. In
this paper, however, the constituent is assumed
to be diatomic according to the following reasons.
Herzberg® has given the experimental evidence
that there exist diatomic molecules in the liquid
phase of mercury and in the vapor phase of
some metallic elements. Furthermore,® Gorden's
calcutation indicates a strong tendency for alkali
elements to associate. If we extend his argument
to the extreme case in which the vapor is co-
nfined within a small volume (i. c., such system is
equivalent to liquid state), we may conclude that
the monatomic species involved in such a system
should disappear. Hence the author assumes that
the constituents of some metallic liquids are
diatomic.

On the other hand, Blackmann,* Montroll, v



Vol. 6 (1962)

Newelli? and Van Hove!® theoretically derived
that there are two maxima in the frequency di-
stribution of oscillators in solid crystaltine state.
This fact suggests that we can make an approx-
imation that there exists two discrete frequencies
allowed for tne oscillator in a crystal. [n fact,
Lindemann and Nernst assumed for some crystals
to have the two kinds of oscillators and assigned
one of the frequencies to be the half of the oth-
er's, and then, calculated the atomic heat capacity
of the crystals according to this modified Einstein
model. Their calculation has given better result
than those calculated from the Einstein crystalline
partition function.

Summarizing these arguments the author assum-
es that some kinds of metals, i.e., Group I clemen-
ts, consist of diatomic molecules in the liquid state
and the molecules can occupy either one of two
sorts of sites, say A and B sites. Then the total
accessible energy tevels of a given molecule in
the liquid may be given by the energy levels in
A site plus those in B sites.

k. Derivation of the Partition
Function for Liquid Metals

Let €a,i and eg,; be the energies of the quantum
states accessible to site 4 and B. Then the pa-
rtition function g4 and ¢a are defined by

ga=2Ze AT and gp=2JX¢:B AT,
‘ .
According to the present mo::rlel, a given mole-
cule can occupy either one of the two sites, i.e.,
a given molecule has accessible to it the full set
of states of site A and site B. Thus the partition
function for 2 molecule is given by
q=Ze 2 AIKT 4 Eo=1B KT = gyt g goereer( 1),
‘

According to Boltzn;ann's law, the equilibrium
fractions of molecules present in the subgroups
A and B are given by the following equations,
respectively:

Na___ g4 o No_ _ qo
Na+Ns — ¢ *™ N3N - ¢

where Na and Np being the mean numbers of
molecules in the states A and B, respectively.
Therefore the equilibrium ratio, g(T), of the
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mean numbers of molecules is given by.

()= Ne —qi- rrerreiinasessenen(9)

7.

The canonical ensemble partition function Q(N,
V.T) for the system described above may be
given by.

QWN, V, DI=qN=(ga-tga)Neesorsenrsinn(3)
where we have partially neglected the comm-
unal entropy term. Actually the communal entropy
is already partially taken care of by the assump-
tion that a given molecule can occupy cither one
of the site A and B. It is also worthwhile to
note that the mean numbers Na and Ns may be
obtained by the following equations:

Na dng Nz
T Na+Ns T30 20 NNy =9 g,
Now, the explicit formula for the partition fun-
ctions ¢4 and ¢ may be easilfr given by the
three-dimensional isotropic Hook’s law assumption
for the forces field of the site. We shall also
assume that the internuclear vibration of the

diamotic molecule is harmonic and that the rota-
tional degree of freedom is classical. These ass-
umptions suffice to write down for the partition
functions g4 and ¢s as follows:

ga={l—e04 :T)'3(1—2"’4”‘)"-%'_3::4;&?...(4‘ a),

qa=(—e My Mt—eomyi T a1,

where

Ga=hvatk, Gs=hvatk, O=hv/k and

Oy =h2/BRL hreeeeraoraren RN ¢ WA

where va and vp are the vibrational frequencic:.
of the molecules in the three-dimensional Hook™,
law field in the sites A and B, ¥4 and *s are the
energies of the lowest quantum states of the mo-
lecules in sites A and B, v is the natural frequ-
ency of internuclear vibration of the diatomic
molecule and I is the moment of inertia. We have
also assumed that the lowest energy level of the
molecule is non-degenerate. The symmetry number
equals two, because we are considering symme tric
diatomic molecules.

The complete expression of g(T) then can be
put in the form:



38 &
@ Tr=qgall-tqu/q1)
(LY uDtrgcmensr.s)
where
SInA=In(28, 83)=—27L weerenr(B.2),
KD LT, o,
(= %F:ﬂr )3850"" --------- 6.0,
€0=15—724 serveren(6.d).

When the temperature becomes high y(7T) be-
comes unity, i.e., the quantum correction becomes
negligible. The expression for g{T) is the explicit
form of the equilibrium ratio given by Eq. 2. It
will be shown later that the equilibrium ratio
becomes also negligible as compared to umity at
high temperature. Thus at high temperature the
liquid is represented by the single characteristic
temperature ¢ defined in Eq. 6.a.

Now it is a simple matter to derive thermody-
namic properties from Lq. 5. If A and g represent
the Helmholtz free energy and the molecular
chemical potential of the systern, it follows that

TV{!frlT: —Ing=— -%—ZjL*SIn T—Inyg(TYX
(1T e ereemrrmsemmmmmnsrinsinriainns N
A+PV o
kHT_ =T NET = —:—T—2j’--—51n T=Iny(T)x

HGUT) ] veeenemmiiienion i (8),
where x.=xa—PV/N and 7L is defined by Eq.
6.a. The
of the system are given by,

internal energy E and enthalpy H

[—4
e

= Xafbeat
H _EtPV. X o & 8T
NET ™  NRT =777 5 % 13
—-d(T)"'(lﬁ),
where
. 0T 0T 0u/T
d(T)=4-3 em?r__l'— i T— | +3( emﬂé_l

08/ T £(T)
—PBIT] )l-f-g(T)"""""”"""m(u)'

We sce that term d(7T) can be ignored when
87T <. Siace entropy S is defined thermodynam-
ically as S={£E—A)/T, the combination of Egs.
7 and 9 yields

'%"=211+51nT+Iny(T){1+g( ™H+5

So

—A(T) vvsronsrmmmni e (D

B. Evaluation of Characteristic Constants

Rotational Characteristic Temperature Or,
Introducting the numerical values of the universal
constants in Eq. 4.¢ we obtain

log #r=1.598—log(l10" » I)

with J(g-cm®)=Mr.2/2No,
where M is the atomic weight of the liquid ¢l
ement considered, No is avogadro's number and
t¢ is the equilibrium distance in A unit between
two nucle ¢ of the moecule in the liquid state. In
this paper, the numerical values of r. for lithium,
sodium, and potassium are taken from the data
for diatomic molecules in vapor phase (Herzberg).
For the other elements we have taken from the

E —T( dlng ) Iy 45— x atomic (or covalent) diamecter given in Moeller's
NeT ™~ or Jvw— RT xT book.1¥ The values of r. chosen are given in Table
gy l.
TasLe |
Rotational Characteristic Constants
Element . L N-a- K Rb Cs Cu Ag Au
Te 2.6723CH) 3.079(H1) 3.923(11) 4.43(M) 4.70(M)  2.346{M)> 2.678(M) 2.672(M)
—log8, 0.01623 0.65954 1. 1004 1. 5240 1.788% 0. 86484 1. 20970 1. 4698
&, x10® 96.33 21. 90 7.936 2.992 1. 626 13.65 6.170 2,390
H: Herzberg’” M: Moeller
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Vibrational Characteristic Temperatures: 8,8 ,
and 5. We see from Table § that the following

best value of the characteristic temperature &

" for the liquid metais is given by #;=1.1 fp. Hence

relationship holds for the alkalj vapor molecules: following the Lindermann’s and Eyring’s sugges-

ﬂo=—?~ i;— tions the author assumes that
where hu/k is the foundamental characteristic =_’£L=%ap remerneninea(13, 2),
temperature assigned to the internuclear vibration
of metallic diatomic gas in the ground state and 03:01:%00 srerssnse e (13, b)),
0o is the Debye temperature given to its solid 1
state. Eyring and Hirschfelder suggested that the and B4=90p coroveiricreni s (13,0,

TasLe |
5 Ay "
Rule of 8p= =~ & for the Alkali Metals
Element Li Na K Rb  Cs

A

“5(obs.) 505(H) 229CH) 133(H) 82. 5(H) 60. 4CH)

% —"k”— 361 164 % 58.9 43.1

&o(obs.) 360(F> 160(A) 100(A) 59CA) 43(A)

(H): Herzberg,” (A): AIPH (American Institute of Physics Handhook),

{(F): Fowler-Guggenhejm.1t'

These coefficients are expected to depend upon
the crystal structure. Fortunately all of the el-
ements of Group | have the same type of crystal
structure in liquid state so that these coefficients
can be treated as being common in Group I et
ements.

¢ Calculation. We shall assume that in the
fusion process of the metals the states A and B
occur at equal probabilities, Thus we assign
g(Tm)=1 where Tm is the melting point of the
metals. Thus, we obtain from Eq. 6. ¢

Fon =310l —e08,Tw) 3 In(1—o-04 ) -..(14).
From Eqgs. 13 and 14 we can calculate the nu-
merical value of eo/kTm. The values calculated
for Group I elements are given in Table J.

%o Calculation. If we assume that the system of
vapor under consideration consists of ideal, mon-
atomic vapor—this is empirically true for metallic
vapor near its melting point—the change in enth-
alpy 4Hv per gram-atom on vaporizalion may be
given by the following equation using Eq. 10:

NRT | %0 | 20 g(T)
at=G gy sy racn} a9,

For the computation of x, the author has used
the values of 4H, at melting point calculated from

Keliey's empirical equation’ (see Table .

¥. Caleulation of Thermodynamic
Properties

A. Vapor Pressure and Boiling Temperature.

According to Gorden's indication® for the alkali
vapor, let us consider a dissociation process in
vapor phase, i.e., M:22M. For such a system
we define Gy as a molar thermodynamic property
given for the system of monatomic vapor at a
partial pressure P; and at a mole fraction 1,
G: as the corresponding property for diatomic vapor
and G as that for vapor mixture at pressure P
and temperature T. Assuming ideal vapor mixture
we deduce then

G(P, TY=G{ P T)~[2G(Ps, T)—Go( P2, T)H} X

If we denote the chemical potentials of mona-

tomic and diatmoic molecules and of the system
as a whole by g 4. and 6, respectively, equil-
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Taecee §

Characteristic Constants for the Liquid Partition Fumction

Noxo
Element 6,4 On 4 T%._ Tz b AHKTwK
kcal/g-atom  obs  kcal/g-atom
Li 180 100 505(H) 1.75 34.28 360(F) 35.26
Na 80 178 229(H) 2.02 24.52 160(A) 25.18
K 50 111 133(D 2.1t 20.34 160CA) 20. 87
Rb 36 80 82.5(iH) 2.20 19. 49 72(%) 19.95
Cs 21.5 47.8 60. 4(H) 2.26 17.91 43(A) 18.33
Cu 158 350 441 2.18 74. 64 J15CA) 76. 64
Ag 114 270 321 2.39 62.86 229(C) 64.75
Au 87.5 194 245 2.27 83.66 175(C) 85. 61
3_4=Tlﬁp, = %]'39, Q(H):% and 3:%5‘9.

F: Fowller-Guggenheim, A: AIPH, C: CEH (J.H. Perry’s Chemical Engineer’s Handbook)

K: Kelly's empirical formula.1 (*) Average value of fp's in AIPH and CEH.

ibrium law gives

p2(P2. T)=2p (P, T) ooeveenn (7).
Introducing Eq. 17 into Eq. 16, we obtain

B, Ty=pa(P1, T) -evvvvmnrennnn(18).
The vapor system at dissociation equilibrium
has thus been thermodynamically simplified to be
handled. We now consider a system where a liquid
and its vapor exist in the state of equilibrium.

From the phase equibrium law we obtain then
_;"#’-(P, Dy=pS(P. T)=pa(PL,T) -+ (19).

where facter of 1/2 is inserted due to counting
each atom twice for a liquid molecule. #” and Iz
may be expressed in the fellowing statistical-
mechanical languages from Eq. 8 and from the
ordinary discussion about monatomic. ideal vapor,
respectively.

1 gt . .S 1
& ET=— ar—it 5T L lay( Ty

{l+g(T)} et (20,
w(Py, T):lan(alm)—jlfih--g inT.---- (21),
where

. Tk R .
Jlgzln{_g_’%g_)_i_ "PB""lC}'"""“"""(22)'

and P represents one atmosphare in this paper
and /1° and wi® are so-called chemical constant
and clectronic weight, respectively, given for a
monatomic vapor. The vales of sL and /1€ for the
Group I elements are given in Table . Eqs. 19,
20 and 2] give saturated vapor equation for liquid

metal as follows:

log P1(atm)=——w-‘~;~ +;“--_—;—|0g y(T)x
{1+gCT)} s (29),

with

A'=x0/2kIn10 and j'=(j%—F)/1n10-----(24),
The third term included in Eq. 23 is so insen-
sitive to the variation in temporature that we
may use, instead of second and third terms, the
constant value averaged over a range of Lemper:

ature from the melting point to the boiling point.
We thus rewrite Eq. 23 as follows:

log P:——I;-:——PB’ with z1=1---- (£5.a).
where

B'=;"-'—é—log ¥(D{+g(TI} - (25.b)
The constants A' and B’ for the Group 1clem

ents are given in Table V.
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Taste N
Vapor Constants Involved in Fqs 20. 21, and 25.

Elment A’ ji"" - i'f- j‘ B'
Li 7,492 -0,0239 4.8769 4.5530 4.55
Na 5359 0.7566 3.8603 4.6168 4.55
K 4,446 1.1002 3.1714 4.2736 4.25
Rb 4,261 1.6118 2.6762 4.2880 4.50
Cs 3,914 1.8994 2.1898 4.0892 4.05
Cu 16,320 1.4186 4.3383 5,7579 5.70
Ag 13,740 1.7731 3.8838 5.6572 5.60
Au 18,300 2.1584 3.5232 5.6816 5.65

—H"C¢=76/1n10 and )'L=jt/inl0.

A Partition Function for Liquid Metals 4]

According to Eqs. 23 and 25, we can calculate the
vapor pressures at melting points and normal
boiling temperatures, assuming £1=1. The results
showa in table ¥ are all in good accordance with
the Quill's'®: empirical values given for a system
containing only monatomic va[;or.

The boiling temperatures at different pressures
have been calculated by Eq. 25 and compared
with the Quill's data again. Inspite of its simple
form the results shown in Table ¥ are satisfactory.

Tasre ¥
Vapor Pressure at Melting Point and Normal Boiling Temperature, Assuming 7 =1.

Vapor Press. at M.P. (atm)

Normai Bmlmg Temp {°K)

Calculated from Observed Ca]culated from Observed
Element £q.23 Eq.25 Eq 23 Eaq.25 Quill AIPH
Li 8.99X 10713 16. 9x1071 10.6<107CEl) 1580 1645 1680 1599
Na 7.40%107" 10.20x 107" 7.94X107(Q) 1182 1180 1187 1162
K 6. 58X 10710 10.82%x 107 14.1X1079(Q) 1059 1058 1052 1030
Rb 2.61X107%0 6.98X107% 7.08X107'9(Q) 1009 950 952 952
Cs 8.28x1070 11.91x10710 15.9X107%CA) 968 965 963 963
Cu 3.21X1077 4.667X1077 3.98X1077(Q) 2878 2864 2878 2855
Ag 2.08x107°¢ 2,931 107¢ 1,95 X 1075(Q) 2464 2478 2485 2466
Au 6.17X10 8.912X10 4.23x10(E2) 3265 3240 3239 2933

Q: obtained by means of extrapolation method from Quill's data 1&

A: taken from AIPH.

El: Van Loar Equation, log P(mm Hg)=— S %30 ~——1.2log T+12.
E2: van Lient Equation, log P (atm)=—"m+7. 20.

B. Entrop py

From Ep.10 and Eq.12 the enthalpy and entropy
of a liquid metal per gram atom are given by

Nok > €o g(T)___
H/ 7= - 'E‘T+5 R T+gCT) 4T}
e enveraaen (26D,
and
S=22E Lot +8In T Hing (U +2(T}+5
Lo _8<_'=l
-3 THects ~4D) .

From these equations it is possible to calculate

the entro py of vaporization and of fusion.
Entropy of Vaporization. The enthalph Hi (P,

T) and entropy $: (P, T), and Ha (P2 y) and S

(P2.T) are the partial molar quantities given for
the system of monatomic and diatomic vapor,
respectively. Then, according to the ordinary
statistical treatment we may express them in the

following forms:

H/T=5R/2 eree(28),

Ho/ T=R(S/2+— 22T _DIRT) -+vne29),
and

$I=R1jse+-3>+3-InT—-InPrCatm} (30,

where Av/k and D are the foundamental char-
acteristic temperature and molar heat of dissoc-
jation assigned to the diatomic molecule in the
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Tante
The Boiling Temperature at Different Pressures, Assuming 71=1
Pressure in atm,
Element 10¢ 1073 1074 1073 1072 }
Li cale, 710 743 875 9% Ji42 1645
obs. 705(L) 775 865 980 1130 1630
Na cale. 507 561 629 711 820 1180
obs. 510(L) 558 623 705 813 1187
K calc. 434 481 539 614 710 1047
obs. 429(L) 475 534 605 702 1052
Rb cajc. 406 450 502 569 657 950
obs. 403(L) 445 496 561 650 952
Cs  calc. 339 432 496 555 647 965
obs. 383(L) 425 476 544 634 963
Cu calc. 1398 1530 1686 1879 2121 2864
obs. 1400(L) 1530 1685 1875 2117 2868
Ag  cale 1194 1305 1440 1610 1820 2478
obs. 1200(S) E305(L) 1442 1607 1816 2485
Au  calc. 1570 1720 1889 2118 2395 3240
obs. 1570(L) 1720 1896 2182 2588 3239

Observed: taken from the Quill’s data.

ground state, respectively, and their values have
been given by Herzberg.?

Let us denote the enthalpy and entropy of
vaparization for the hypothetical system consisting
of ideal, monatomic vapor only, and those for the
real system containing diatomic vapor by Hpn
and Sv,"):and by Hp and S, respectively. Then
we will obtain the following expressions by the

application of Egs. 26 to 30.
1l

AH, _ Nexo . Noxe [ o 2Ty
T STt [kT T+g(D) +d(73}
............... 3D
AHp 4Hy v D 3 he/kT o
RIS i W 75 i S D
Tizs (32),

aSot = (o 0P g (D14 (T3]

Nk [ e g(T)
+22 | BT THg(Ty D} sw,

+
and
Ay
AS0= 50 Nok{ g+ 5B ATy
T2
1+x2 dmees (34)»

where j=j16~5L The results calculated from
these equation, as shown in Tables W and W1 arc in
gond accordance with those observed. We notice,

however, that the entropies of vaporization cal
culated at normal boiling point are somewhat
larger than those observed but do not exceed the
commual entropy R. This discrepancy perhaps
comes from the fact that we have treated the
total number of lattice sites and the minimum
potential energies x's as constant though we
consider them as the functions of tem perature
and volume.
TasLe W

Entropy of Vaporization at Melting Point—-
Calculated From Eqs.21 and 33

Calculated(e.u.)-_ Obs;rved(-;.u..)_

Element 4Hv' [ Tm  4Se 4Sp

) L 77.7 77.5 77.7(K)
Na 67.9 67.9 67. 9(K)

K 62.0 62.0 62. 0(K)

Rb 64.0 64.0 63.9(A)

Cs 60.8 60.8 60. 7CA)

Cu 56.5 56.5 56.5(K)

Ag 52.5 52.5 52. 5(K)

Au 64.1 64,1 64. 1(K)

On computation of Ao/ Tm the melting points
used are given in AIPH, K Calculated from the
Kelly’s empirical equation, A : AIPH.
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Tase W
Entropy of Vaporization at Boiling Point— Calculated From Eqs. 31, 32, 33 and 34.

Uamg the Values of x%

Assuming z1=1 given below
Calculated (e.u.) : Calculated (e.u.) Observed(e.u.)
Element AHy/ Th 4Svn . 3Hu/Tb 48y " 45
Li 21.91CA) 22.13 19.57(A) 19.79 19, 8(Q)
20. 83(Q) ' 18.49(Q) @
Na 21.42(A) 21.07 19.51CA) 19.16 19 48(Q
20.99(Q) 19, 08(Q) 8@
K 19.99(A) 19.43 19.35CA) 18.79 17.
19.59(Q) 18.95(Q) - »@
Rb 20:80CA, Q) 19.64 20. 22(A, Q) 19.02 19.02CA)
Cs 18.83¢A, Q) 18.65 18. 1A 18.01 16.96CA)
Cu 24.41(A) 26.19 - - 25 4°6A)
Ag 25.87CA) 25.88 - - 24.62(A)
A 28,93(A) 26.93 - - 25.30(A)
26, 31(Q) -

a) A and Q in the tecond, fcurth and last columns denote that the boiling temperatures and entropies
taken from the data of AIPH (A) and from Quill's data (Q), respectively.

b) The values of 1 at normal boiling point have been calculated by the usual statistical methods, using
the data givenn Herzberg's book. The numerical values of z; for alkali metals are: Li(0. 845), Na(g. 865)

K(0.950), Rb(0.95), and Cs(0, 942).

Entropy of Fusion. Before discussing the en-
tropy of fusion, it should be necessary to consider
the state of solid for alkalis 2nd to set up a
crystalline partition function of their solid states.
As pointed out by several authors’” solid alkalis
are composed of the two allotropic modifications,
i.e.. « and S-froms. For example E. Cohen and
G. de Bruin argue that under ordinary conditions
solid sodium consists of two alotropic modificat-
ions, i.e,, a-sodium and ﬁ-sqdium. the portions of
which are dependent upon their previous therrmal
treatments. The transition point yet undertermined
lies between 273 and 263° K, possibly near 348° K.
Moreover, it is seen in the literature!” that there
exist the two allotropic modifications for lithium,
potassinm and copper in their solid states. Then
the solid crystalline partition function X(7T) of
the system can be written by,

K(D={q.(T)+q( TH¥,

where qs and qy are the molecular partition func-
tions for the two forms of modification. At the
melting point, we assume that g.=g; in accord-
ance with the previous assumption in the case of

liquid state. The above eqnation thus reduces to
K(Tm)=129.}¥=(2¢s}*. Hence combining this
equation with the usual Einstein model X(7T) will

be given by

K(T)={ ”(l _r;”’:wr)a}ﬁ

where 8z is the so-called Einstein characteristic
temperatore and ¢, i3 the energy required for
the separation of one of the oscillators in the
normal state from the other to the infinite distance.
We may assumé further that the Einstein oscill-
ators are reduced to the classical form at the
melting point so that we have in the following

~ final form:

K(Tw = { 2(—‘—-)33"“”‘1"'} (at melting point)
“evvresasatibbrretianta (35)
At the melting point, the entropy of the solid
crystalline will be thus given by
SE(Ta) =NR(FE+3+3 In Ta)eerreee(36).
where jX=In(2/83)
Let us then check the entropy equation, £y, 36
by comparing the values of entropy of sublimation
claculated with those observed. From the combina-
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tion of Egs. 30 and 3§, the entropy of sublimation
4S. will be given by

48, (Tw) = Nok(jiO=f5~ 10 Tam-k— 1Py

.....‘........‘...(3?)_

£q, 31, together with Fowler's rule, ie., fr=
—?.—65 make [t possible to calculate the entropy of
sublimation or the Debye characteristic temper-
ature by reversed calculation.

On the computation the data given in AIPH are
used and the values calculated are shown in Table
K. The results are satisfactory compared with th-
ose observed. This means that the solid crystalline
partition function and Fowler's rule about the
Einstein characteristic temperature work correctly
to give the Debye temperature.

TasLe

Einstein and Debye Temperatures, Calculated
from the Entropy of Sublimation.

Ei%get:‘ig' Bib{e Tmpera_ture. &
Calcd. from|Calcd.f Obsd.
Element Eq 37 9, :—5":—95 AIPH CEH
Cs 35.2 49.3 43 68
Be 667 934 1160 900
Cd 118 165 165 168
He 70.3 98.5 B9

Since the ci'ystalline partition function given by
Eq. 35, together with Fowler's rule have been
confirmed to work correctly, we may use them to
derive the equation of the entropy of fusion. By
means of Eqs.27 and 35 the entropy of fusion will
be expressed in the following form, introducing
the limitting value of g¢7) at melting point, i.e.
g(Ta)=1 .

45/ =Nok{s* —j%~Fin Tam £ L T

~Lato+ G 2T} oonnnaB),
On computation we have used the data in AIP
H and the results obtained (shown in Table X)
are successful to give the correct values of the
Debye temperature. From this fact we may co-

- e 14 3}

nclude that the liquid partition function retains its
correct feature to describe the state of the liquid
at melting point.

Taere X
Einstein and Debye Temperatures. Calculated
from Entropy of Fusion

Eins;edg Debye Temperature
Caled.from|Caled. from|  Observed
Element | po a9 Bo=—=0x| AIPH CEH
Li 288 403 430 510
Na 111 156 160 202
K 65.5 92 100 120
Rb 43.6 61 59 85
Cs 30.0 42 43 68
Cu 215 301 343 315
Ag 156 218 229 218
Au t17 - 164 164 17%

Furthermore, if we neglect the contribution due
to the quantum effect and put e, /kTm=2as the
average value for the various elements, Eq. 38
becomes

457=R(j'~j%—Ln 114 5 1n2)---(39),

Substituting the following relations into Eq. 39:
J‘Lz—%lna == -%*ln(?ﬂ:ﬂﬁ'.-t’).

Or=h%/8x2lk=k? No/4n2kMre? and jX=In(2/8:3).
O/ T
48 /=Rln—J~+ Ringyr o
B vy N o2 Tu 12
 CE) el ) o,

yI=E855/00 43 812,

We obtain

or, !9D=(

where

We see that Debye temperature 8p is proportio
nal to (Tu/Mr V2, which has been derived also
by Lindemann.'®

C. Atomic Heat Capacity

Atomic heat capacity at constant volume Cy

and that at constant pressure Cp are thermodyn-

d
amically expressed in the formulas: Cy= j?« )ﬂ

and Cp==Cr+ —:;—2 VT, respectively, where a and
8 represent the coefficients of the cubical thermal
expansion and of the compressibity, respectively.
Therefore the application of Eq. 9 gives
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C.= R + B { 8,4/ T are wide discrepancies evea among the observed
T2 2 (T) -1 values themselves as shown in Meller's book. " If
—3( e,;;"f_l)] i+g(DF — C'e-(41.2), we neglect quantum effect E;q.)ll then becomes
=T{4—“’—304‘+3(m\3—'”'8}x C""=_R+ ) _[l__i.;L(ﬁ]T
li:PT) ] ~{41.b), This equation gives the following limitting vﬂ-

with m=?a§r CSchﬁq’f.

The atomic heat eapacities of the several el-
ements at melting point have been calculated
from Eq. 41 and compared with empirical valnes,
as given in Table XI. We see some discrepancies
between the values calculated and those observed,
but the results may be satisfactory, because there

CATI=3R—2ER as Tu— T,
Since eo/ATa~2, g(Ta)=1 and
g(T8)/{1+g(THY~0.
This tendeacy for the limitting values is ctlt
sisteat with the empirical facts’ found in uwrt::u'jrt
argon and neon etc.

Taprs XI
Atomic Heat Capacity
Li Na K Rb Cs Cu Ag Au
Cv cale, a) 6.11 6.30 6.39 6.35 6.42 6.27 6.60 6.40
obs, b) . 6.4 591 681  6.66 - - -
Cp cilc. b - 727 .09  7.40  7.67 - - -
obs. ) 6.94 7.4 7.65 7.82 7.91 - 7.46 7.00

a) Co(Calc.): calculated from Eq. 41.

b) Clobs.) and C,(calc.): calculated fram the formulaCy=

2
cu+—“5— VT with the numerical values of @ and 4 taken from Landort's Physicalishe Chemische Tabllen
and Washbirn's International Critical Table. ¢) Cp(obs.): taken from Lyon's book.2w

Y. Conclusions

Using the present liquid model the following
resuits have been obtained.
1. The pressure of saturaied vapor is given by

log Pi(atm) =——Af +5 4+ —;_,-log y(TIx

{1+2(}.
This equation reduce to the ordinary thermody-
namic expression

log P (atm)=---%:- +B’, with n1=1.

The characteristic constants involved in the above
two equations have been evaluated by the statisti~
cal mechanical method.
2. The entropy of vaporization at the normal
boiling point becomes
A5 TH=R(j1i6—yL),

and R(ji6—ji)= {oonstant+ln(——-mcﬂo))}
+In #p--- eQa).
It bas been found by the author that the first
terin of equation (a) is constant, characteristic of
the subgroup in the periodic table and hence that
the greater the value of #p the larger the value
of 45.(7.,) in accordance with empirical fact.
3. From the consideration of entropies of fusion
and sublimation at melting point it is confirmed
that Fowler’s rule, i.e., 03=-§-8n, is applicable
to the calculation of the Debye characteristic
temperature from the liquid partition function.
4. The atomic heat capacity has the following
limitting values:
Co(T)=3R—2.5R as Ta—T:.
This result is also in accordance with the ex-
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pectation from the solid crystal theory and em-
pirical results about liquids,
5. Ignoring the quantum effect we may rewrite

the liquid partition funciton Eq. 5 as follo-
ws:

L[ ﬁ:(%)s{w(%‘; D

Applying the relation of &(Tm)=1 10 the above

equation we may obtain the following equation:
to { T—Tm

3 -_fe
q(T)z(-g—) {4777 )]eu/u' <b).
We therefore conclude that equation (b) is
probably the simpiest possible one that retains the
correct qualitative features,especially for a liquid

metal with Q;‘-(l‘
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