ON ORDER-CONVERGENCE OF PARTIALLY ORDERED GROUPS

By Tae Ho Choe

1 Introduction, A vpartially ordered group X is (i) a partially ordered (ii)
a group, in which (ili) the inclusion relation is invariant under all group-
translations: x—a+x+0 for any a,x, beX [2]. Let {f(d),deD) be a net on the
directed set D with values in a partially ordered group X. In a partially ordered
set, G, Birkhoff has defined the concept “o-convergence” by making use of a net

(or directed set) which has been studied by Frink, McShane and Wolk [1].

In this paper, we shall apply “o-convergence” to the partially ordered group
X to introduce the order topology to X, First of all, we shall find the sufficient
conditions for a net f to order-converge to an element in a partially ordered set.
Making use of these sufficient conditions on the o-lattice, we shall find a
necessary and sufficient condition that an element of X be an isolated point of
X under it’s order topology. And we shall show that on a complete /-group,

the necessary and sufficient condition for X to be discrete under it’s order
topology is that X must have a chain condition, Finally, we shall give some

other properties of the partially ordered group X in order that an element of X
be a limiting point of o0-convergence for some net f,

2 Preliminaries, We here recollect some terms and notations {1]. Let X
be a set partially ordered by a relation =, If S is a subset of X, we write

S*={xeX|x=a for all acS}, St={xeX|x=a for all acS)}.

fet us call a subset S of X up-directed (down-directed) if and only if for all
x€S, and yeS there exists 265 such that zzx,z=y (2=x,2=y). For nets {f(«),

aeD) our terminology and notation are those of Kelley [4].

We give the Birkhoff-Frink-McShane definition of o-convergence.,

DEFINITION, If {f(x), aeD} is a net in a partially ordered set X, we say
that f o-converges to y (and write y=0-lim f) if and only if there exist
subsets M and N of X such that

(i) M is up-directed and N is down-directed,
(i) y=Lu, b, M=g b, N,



4 Tae Ho Choe

(iii) for each meM and #eN, there exists BeD such that m=f(a)=n for all
a=f3.

e

One verifies easily the following formulas

@) If {f(a),aeD) is a net in X and f(«x) =¢ for all o, then ¢=o0-lim f.
(b) If ¢a=o0-1im [ and d=o0-im f, then @¢=2b.

(¢) If e=0-1im f and {g(0), cT'ED‘:} is a cofinal subnet of f, then ¢=o-lim f,

'The following lemma will be of some use to us.

LEMMA 1. Let X be a partially ordered set and a an element of X. If
there exists a chain C such tha! a ¢ C and e=Il.u.b, C (or =g.1,b. C), then
e=o0-lim [ for some net f in X—{a}.

PROOF, If ¢=1,u.b, C and @¢C, then C is an infinite chain. It is easy to
find a directed partially ordered set D such that C is isotone image of D,
1.e,, there is an isotone f: =g in D implies f(@)=f(B) inC, and C={f(),
oeD}., If we take M=C,N={a}, then (1) and (ii) are satisfied, And for each
beM and aeeN, there exists aeD such that &= f(a) and d=f(3) =c for all =,
Hence ¢=o0-lim f. And C={f(ax), e D} CX— {a}.

As usual, we define a subset S of a partially ordered set X to be c/osed under

the order topology, if and only if {f(a),aeD)} is a net in S and e¢=o0-lim f
Imply aeS.

Then, as well known, under the order topology partially ordered set is a
Hausdorff space, and any closed interval is closed under the order toplogy [2],

As a corollary of lemma 1 we have the following,

COROLLARY. Let X be a particlly ordered set and a an isolated point
of X under it’s order lopology. Then there exist two subsets P={xeX|x

covers @}, Q={xeX|x is covered by @) of X such that every element over a
(koz‘ a) 1S over an element xcP and every element under a (not @) is under an
element yeQ.

Let {f(ax), axeD) be a net in X, If the directed set ) is countable total ordered,
then we call it a ordinary net, and denoted by {f(m), meD}, And we can
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introduce the ordinary order topology in a partially ordered set X by making
use of the above ordinary net {f(m),meD).

We shall use the above corollary to prove the following,

THEOREM 1, Let X be a o-lattice. The element a 1s an isolated point of
X under the ordinary order lopology if and owly 1f there exist two subsets
*P={xeX|x covers a}, Q= {xeX|x 7s covered by a} of X such that every elemeit
of any chain in (@) *— {@) 1s over an element xcP, and every element of any
chain in {.fz}*"— @} s under an element xeQ,

PROOF. By the above corollary, the necessity is obvious, To prove the

converse, we shal. show that the subset X— {a} is closed, Suppose X —{e} is not
closed: there exists a net {f(m), meD} in X— (¢} and e¢=o0-lm f, i.e., there
exist subsets M and N of X which satisfy (i), (i1) and (i), Setting #,=1,u, b,
{(f(m) |m=n}, v,=g.1.b. {(f(m)Im=n}, we see that v,=f(n)=u, for all neD,
and e¢=g.l.b, {#,lneD) =1 u, b, {v,|neD}. In fact, by Gi) and (ii)  is a lower
bound of {«#,|neD}. Suppose b=, for al' neD, By (i), for every xeN there
exists 7z¢D) such that f(m)=x foi all m=n, It follows u,=x, Therefore 0 is a

lower bound of N. By (ii) we have 6=¢ Hence ¢ =g.l.b. {#,|neD}, and
dually, If ¢=v, for somec #, then we have e¢=xu, for any neD, In fact, suppose
a=u,, for some mel), Then we have two cases: (1) m=n, we have ¢=vy for all
h=n since ¢=1 w.b, {v,}. Hence e¢=f(m) which is contrary. (2) m<n, we
similarly have ¢=f(#) which is also contrary, In a similar way, if ¢=u, for
some 7, then we have e¢xv, for all #eD, For both cases, we have either g,
for all ne D or e>~u, for all neD, Say a>wu, for all neD,Since {#,} isa chain

not containing @, by hypothesis there exists the element x of P which covers ¢
and satisfies x=u, for all neD, But this contradicts to ¢=g.l. b. {«,}.

3 Order topology in po-group. Let X be a partially orderd group. For a
net {f(a),xeD} and yeX, we define a new net {f (), aeD} such that f («)

=f(a) +y for each ael. 'T'hen we have the following theorem

THEOREM 2, Let X be a partially orderved group. For some net {f (o),
aeD), y=o-lim f if and only if O=o0-lim f.,, where 0 is an identity of X.
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PROOF, Let y=o0-lim f. Then there exist sutsets M and N of X such that
(i), (i1) and (iii) of it’s definition Lold, It is easy to see that M —y= {m—y]|
meM), N—y={n—y|neN] is an up-directed, a down-directed set respectively.
It is immediate from (ii) that 0=l,u.b, M —y)=g.l.b, W—y). For each m—y
eM—y, n—yeN—y, there exists feD such that m—y=f(a) —y=n—y for all a=5,
Le,, m—y=f.,(a)=n—y for all o=B. And the converse may be+left to the

reader,

As an immediate corollary of theorem 2 we have the following.

COROLLARY. Let X be a partially ordered group. If there exists at least
one 1solated point of X, then X is a discrete space under it’s order topology.

And we have the following remark_

REMARK. Let X be a partially ordered group and {f(a), aeD) a net in
X. If there exists subset M of X such that

(i) M is wp-directed.
(i) 0=l u, b, M

(111) for each meM therve exists BeD such that m=fla)=-m for all =
Then O=o0-lim f,

In fact, it is obvious that —M={—m|meM) is a down-directed subset of X,
And O=g.l.b. (—=M). For each meM, —mni,ec(—M) there exists meM such that
ma=m,, Mms=m,, By the hypothesis (iii) there exists FeD such that m,=m,
= fla) E—my=<—m, for all a=4.

An element @ of an /-group is called positive (negative) if ¢=0(e=0), We say
that /-group satisfies chain condition if every non-void subset of positive elements
has a minimal element,

We now prove our main result,

THEOREM 3. Let X be a complete l-group., X is discrete under it’s order
topology tf and only if X has chain condition,

PROOF., Suppose X is discrete under it’s order topology. Let S be a non-void
subsct of positive elements, By Zorn’s lemma, there exists a maximal chain C in

S. Since C is a chain as well as a subset of positive elements, C is lower bounded.
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Therefore, by hypothesis there exists m=g.1.b,C. If m¢C, then by lemma 1
m=0-lim f for some net f, which is contrary to X being discrete. Hence meC
CS, and moreover s 1s a minimal element of S, Thus X has chain condition,
To prove the converse, suppose X has chain condition, We need only to show
that 0 is isolated point, i.e,, X— {0} is a closed set. Let us assume X — {0} is

not closed, i.e., there exists a net {f(«), aeD} in X— {0} such that 0=o0-lim
f. Thus X has two subsets M, N such that (i), (ii) and (iii) are satisfied, It

follows that either OeN implies OtM, or 0eM implies 0¢N. Thus, for any case
we have 0¢N or ¢M. In first O¢N, since all elemnts of N are positive and N
non-void subset of {0}*— {0}, N has a minimal element s by hypothesis, By
(1) N is down directed. Hence the element s is the least element of N. [t
condradicts to O0=g.1.b, N. Next suppose that 0¢M, On the other hand, in
any /-group the set of positive elements and that of all negative elements
are anti-isomorphic, Hence we may see that by chain condition, every non-void
subse of negative elements contains a maximal element, Thus by the dual
argument M has a greatest element of M. It is also impossible,

By the fact that any complete /-group either satisfies the chairn condition, or
has at least the cardinal number of the continuum, we have the following,

COROLLARY. Let X be a complete [-group, If X is not discrvete under
t1’s order topology, then X has at least the cardinal number of the continunm,

From the proof of theorem 3 we have the following,

COROLLARY. Let X be an [-group., If X has chain condition, then X
1S discrete under tt’s order topology.
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