ON THE CONTINUITY OF GROUP OPERATIONS OF AN L-GROUP WITH CP-IDEAL TOPOLOGY

By Tae Ho Choe

1. Introduction Recently, T. Naito [1] has introduced the concepts of P-CP-, MP-ideal topology in a lattice. And he has proved the following theorem
([1] Theorem 10 in Chapter III): In any commutative l-group, the group operations are continuous with respect to its CP-ideal topology.

In this short paper, we shall find a sufficient condition that the group operations of a noncommutative l-group are continuous with respect to its *CP*-ideal topology.

- 2. Definitions and preliminaries. Let L be a lattice. A subset I of a lattice L is called to be a *prime ideal* if and only if the following conditions hold:
 - (i) $x \leq y \text{ and } y \in I \text{ imply } x \in I$.
 - (ii) $x \in I$ and $y \in I$ imply $x \cup y \in I$.
 - (iii) $x \cap y \in I$ implies $x \in I$ or $y \in I$.

And a prime ideal I is called to be a CP-ideal if and only if the following condition holds:

(iv) if $\{x_{\alpha} | \alpha \in \Delta\} \subseteq I$, and there exists $\sup_{\alpha \in \Delta} x_{\alpha}$, then $\sup_{\alpha \in \Delta} x_{\alpha} \in I$. The family of all CP-ideals is said to be a CP-family.

Dually, we can define the concepts of a dual prime ideal, a dual CP-ideal, and dual CP-family. And we shall denote by CP the union of the CP-family and the dual CP-family. The CP-ideal topology of lattice L is that which results from taking CP as a subbasis for the closed sets of the space L.

An 1-group L is (i) a lattice (ii) a group, in which (iii) the inclusine relation is invariant under all group-translations $x \rightarrow a + x + b$

The following Lemmas are proved by T. Naito [1].

LEMMA 1. In any l-group, if I is an element of CP, then each of I+a and -I is an element of CP.

LEMMA 2. In an l-group L with its CP-ideal topology,
(a) any neighborhood of an element a of L can be written in the form U+a, where U is a neighborhood of zero element 0 of L.

14

(b) -U is a neighborhood of 0.

We shall use the notations and terminologies in [1].

3 Results. First, we shall prove the following Lemma

LEMMA 3. Let L be an l-group, in which $\inf_{\alpha} x_{\alpha}$ and $\inf_{\alpha} (x_{\alpha} + a + x_{\alpha})$ exist for some set $\{x_{\alpha} \mid \alpha \in \Delta\}$ in L. Then $\inf_{\alpha} (x_{\alpha} + a + x_{\alpha}) = \inf_{\alpha} x_{\alpha} + a + \inf_{\alpha} x_{\alpha}$ if and only if $x_{\alpha} + a + x_{\beta} \ge (x_{\alpha} + a + x_{\alpha}) \cap (x_{\beta} + a + x_{\beta})$ for any x_{α} , $x_{\beta} \in \{x_{\alpha} \mid \alpha \in \Delta\}$.

PROOF. Assume $\inf_{\alpha} (x_{\alpha} + a + x_{\alpha}) = \inf_{\alpha} x_{\alpha} + a + \inf_{\alpha} x_{\alpha}$. Then we have $(x_{\alpha} + a + x_{\alpha}) \cap (x_{\beta} + a + x_{\beta}) = (x_{\alpha} + a + x_{\alpha}) \cap (x_{\alpha} + a + x_{\alpha}) \cap (x_{\beta} + a + x_{\alpha}) \cap (x_{\beta} + a + x_{\beta})$ for any x_{α} , $x_{\beta} \in \{x_{\alpha} | \alpha \in \Delta\}$. Hence $x_{\alpha} + a + x_{\beta} \ge (x_{\alpha} + a + x_{\alpha}) \cap (x_{\beta} + a + x_{\beta})$. Conversely, we put $\inf_{\alpha} x_{\alpha} = x$. Since $x_{\alpha} \ge x$ for all $\alpha \in \Delta$, we have $x_{\alpha} + a + x_{\alpha} \ge x + a + x$ for all $\alpha \in \Delta$. While $a + \inf_{\alpha} x_{\alpha} = \inf_{\alpha} (a + x_{\alpha})$ in any 1-group, we have $x + a + x = \inf_{\alpha} \{\inf_{\alpha} (x_{\alpha} + a + x_{\beta})\}$, where $x = \inf_{\alpha} x_{\alpha} = \inf_{\alpha} x_{\beta}$. By the hypothesis, $x_{\alpha} + a + x_{\beta} \ge (x_{\alpha} + a + x_{\alpha}) \cap (x_{\beta} + a + x_{\beta})$ for any x_{α} , x_{β} . From these facts, we see $x + a + x = \inf_{\alpha} (x_{\alpha} + a + x_{\alpha})$.

Finally, we prove the following theorem

THEOREM. Let L be an l-group, in which if $\inf_{\alpha} x_{\alpha}$ exists for some $\{x_{\alpha} | \alpha \in \Delta\}$, there exists $\inf_{\alpha} (x_{\alpha} + a + x_{\alpha})$, moreover $\inf_{\alpha} (x_{\alpha} + a + x_{\alpha}) = \inf_{\alpha} x_{\alpha} + a + \inf_{\alpha} x_{\alpha}$, and dual. Then the group operations of L are continuous with respect to its CP-ideal topology.

PROOF. The following method of proof is due to T. Naito. By Lemma 2, it is sufficient to show that for U+(p-q), a neighborhood of p-q, there exist U_1+p , U_2+q such that

$$(U_1+p)-(U_2+q)\subseteq U+(p-q): U_1+(p-q)-U_2\subseteq U+(p-q)$$

where U_1U_1 and U_2 are neighborhoods of 0. Since $-U_2$ is a neighborhood of 0, we shall show that for any neighborhood U_1 of a there exists a neighborhood U_1 of 0 such that $U_1 = a \cup U_1 + a \cup U_2$, where $u_1 = a \cup U_2$. We shall devide into several cases.

Case 1). U^c (=complement of U in L) is a deal CP-ideal. Then $U^c + a$ is also a dual CP-ideal by Lemma 1. Let I be the set of all x such that $x + a + x \in U^c + a$: $I = \{x \mid x + a + x \in U^c + a\}$. Then I is a dual CP-ideal. In fact, if $x \in I$ and $x \leq y$, then $x + a + x \in U^c + a$ and $x + a + x \leq y + a + y$. Hence we have $y + a + y \in U^c + a$: $y \in I$. If $x \in I$ and $x \in I$

inf $(x\alpha+a+x\alpha)$ exists and inf $(x\alpha+a+x\alpha)=x+a+x\in U^c+a$. Hence we have $x\in I$. If $x\cup y\in I$, then $(x\cup y)+a+(x\cup y)\in U^c+a$. By the duality of hypothesis, we see $(x\cup y)+a+(x\cup y)=(x+a+x)\cup (y+a+y)\in U^c+a$. This means that x+a+x or $y+a+y\in U^c+a$, i. e. x or $y\in I$. Hence I is a dual CP-ideal of L. Now we put $I^c=U_1$, then U_1 is a neighborhood of 0, because $a\in U^c+a$. Now we shall prove $U_1+a+U_1\subseteq U+a$. If $x\in U_1$, $y\in U_1$, then x+a+x, $y+a+y\in U^c+a=(U+a)^c$, i. e. x+a+x, $y+a+y\in U+a$. By the hypothesis and Lemma 3, we see easily that $x+a+y\in (x+a+x)\cup (y+a+y)$. And we have $x+a+y\in U+a$. In fact, if $x+a+y\in U^c+a$, then x+a+x or $y+a+y\in U^c+a$ which is contrary. Hence $U_1+a+U_1\subseteq U+a$.

Case 2) U^c is a CP-ideal. This case is dual of case 1).

Case 3) U is any neighborhood of 0. U^c can be written in the form

$$U^{c} = \bigwedge_{\alpha\beta=1}^{n_{\alpha}} I_{\alpha\beta} : U = \bigvee_{\alpha\beta=1}^{n_{\alpha}} \bigwedge_{\alpha\beta=1}^{c} I_{\alpha\beta}^{c}$$

Since U is a neighborhood of 0, there exists α_0 such that $\bigwedge_{\beta=1}^{n_a} I_{\alpha_0\beta}^c \ni 0$. By case 1) and case 2) for each $I_{\alpha_0\beta}^c$, there exists a neighborhood $U_{1\beta}$ of 0 such that $U_{1\beta} + a + U_{1\beta} \subseteq I_{\alpha_0\beta}^c + a$. We put $U_1 = \bigwedge_{\beta=1}^{n_a} U_{1\beta}$ then U_1 is a neighborhood of 0 and $U_1 + a + U_1 \subseteq \bigwedge_{\beta=1}^{n_{\alpha_0}} (I_{\alpha_0\beta}^c + a) = (\bigwedge_{\beta=1}^{n_{\alpha_0}} I_{\alpha_0\beta}^c) + a \subseteq U + a$. This completes the proof.

COROLLARY 1. If L be a commutative l-group, then the group operations of L are continuous with respect to its CP-ideal topology. (This theorem has already proved by T. Naito in the same way)

In fact, in any commutative l-group, the hypothesis in above Theorem is satisfying by Lemma 2.

COROLLARY 2. In an l-group with continuous group operations with respect to its CP-ideal topology, if $x_{\alpha} \downarrow x$, then $(x_{\alpha} + a + x_{\alpha}) \downarrow (x + a + x)$, if $\inf_{\alpha} (x_{\alpha} + a + x_{\alpha})$ exists.

In fact, by Note in [1] (p.241), if $x\alpha \downarrow x$, then $x\alpha \to x$ (*CP*-ideal topology). Hence, since group operations are continuous, we have $x\alpha + a + x\alpha \to x + a + x$ (*CP*-ideal topology). On the other hand, we have $(x\alpha + a + x\alpha) \downarrow \inf(x\alpha + x + x\alpha)$. Therefore $x\alpha + a + x\alpha \to \inf(x\alpha + a + x\alpha)$ (*CP*-ideal topology). Since L is a L-space, we have $\inf_{\alpha}(x\alpha + a + x\alpha) = x + a + x$, i.e. $x\alpha + a + x\alpha \downarrow x + a + x$.

May, 1960.

Mathematical Department

3.

Liberal Arts and Science College Kyungpook University.

REFERENCE

[1] T. Naito, Lattice with P-ideal Topologies, Tohoku, Math. Jour. Sendai (Japan) 12 (1960) pp. 235-262