GAUSSIAN SPHERICAL REPRESENTATION OF A HYPERSURFACE
OF AN EUCLIDEAN SPACE II

By Younki Chae

1. Covariant derivative.

This paper is a continuation of [1]. In [1], we have studied some intrinsic

properties of a Riemannian space S", which is the Gaussian spherical represen-
tation of a hypersurface V" immersed in an (n+1)-dimensional Euclidean space
E"*' and the correspondence of the space S™ and V". Here, we are going to

find some more relations between S" and V" by means of the covariant derivative
and Lie derivative.
Let g;; (x) and H;; (x) be the first and second fundamental quantities of Vf’

respectively, then the Gauss and Codazzi equations are stated as follows:
(1. 1) Riju=Hypty—Hy Hy,
(2. 2) Hijp —Hip ;=0 .

Throughout this paper, the comma (,) and the semicolon (;) followed by
indices denotes the ordinary and the covariant derivatives with respect to the

Christoffel symbol of V", respectively.

If we denote the metric tensor of S° by C;; (x) we have [1]

By defining (H®®) as the inverse matrix of (H ) We have
(1. 4) CH =g H" H".

Furthermore the Christoffel symbol 7z'_,-}; and the curvature tensor ./ J-i,, of S*®
are given by

(1. 5) T =H™ (H i = (o Haj ) =H™ (H = {2V H o).

]

i ai b
[For any contravariant vector V' and covariant vector V; we have

(1- 7) Vlirr—'- Vi,I"‘HmiH lVﬂ )

ma;
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(1. 8) V.

[

—_— ma
II“‘Vi;I“H Hwi:l Vﬂ »
where solidus () followed by indices denotes the covariant derivative with
- 1
respect to T,
In general, we cen extend above process of covariant differentiation as
follows:

ab---cd ab---cd
(L. 9) T apean =T ey
ma ~p8shecd ind 1~ ab--.cs
ms I(H I af- '}*o_l_ +HTT af-- )
ms nd --cd , | ab---cd
—H (Hma;;lT Sﬁ...f‘ya.r '.TH’IHE:IT ”'ﬁ..."':fg)!

where T”b"""'d&,ﬁ___h},a is the components 0f any mixed tensor of contravariant

p -order and covariant g-order.

As the particular case of the equation (1.9) we have followings:

(1.10) b””-— 1 J(H™ g T g giey,
(1.11) giin=— H™(H .. IgaJ+H,,U i)
(1.12) HUH__HU! ’ HY |1 __H“
(1.13) Ciint =O=C”|;_

Making use of the Gauss equation (1.1) and (1.12) we have
(1.14) ts=0

Hence we have

TsIEOREM 1. The space St is a symmetric space Jor any Riemannian Sspace
Vn,

2. A special homothetic transformation.

For an infinitesimal transformation (2.1) in V", the followrng equations %old

[3]:

(2 .1 =1+ &dt ,

(2. 2) £ in=¢CjntCp:j >

(2 .3) £(p) =& jat Ripe & »

2. 4) Ry = (RN~ @D -

where the symbol £ denotes the Lie derivative.

In the space V", with positive definite quadratic differential form
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ds* =g;; dxidxj, the infinitesimal trancformation (2.1) is called conformal it
the following relation holds [2]

(2. 5) £g,:=0g,
where 0 i1s a function of x. The conformal transformation with the constant o
is called homothetic. And the necessary and sufficient condition that the
infinitesimal transformation (2. 1) to be homothetic is analytically represented
by the following equations .

(2. 6) £8 =08 £{j‘k}-——0 :
An infinitesimal transformation is called pseudo-homothetic 1f it 1s conformal
transformation under which the curvature tensor 1s mvariant, that is the
{following equations

(2. 7) £8i,=08 i > £R}-k1: ,
are simultaneously satisfied.

From the equations (2. 2) and (1. 9) we have

(2. 8) £C]k:£gjk_ﬂ Q-HHMHmJ':k E a *

1k ?

If the infinitesimal transformation (2. 1), which is conformal in V", 1is also a
conformal transformation in S"* then there exists a function V¥ (x) such that:
(2. 9) O-gj-k—2H111aH1?Ij:kéa:"]U.gabHaj ku .
Multiplying g’* to the equation (2. 9) and summing for 7 and %4, we have
(2. 10) no—2g" H™ H .., ¢,=g™ ¢" H, H,, .

By interchanging 7 and % in the equation (2.10) and subtracting it from

(2.10), we have following equation by means of the equations of Gauss and
Codazzi:

(2.11) Vv-R=0,

where R is the scalar curvature of V", Hence we have

THEOREM 2, The infinitesimal conformal transformation of a Riemannian

space V" with non vanishing scalar curvature is not an infinitesimal conformal

transformation in S™ if ¥ does not vanish.

COROLLARY, The infinitesimal conformal tyansformation of a Riemannian
space V" with non vanishing scalar curvature is a motion in S".
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THEOREM 8, The homothetic transformation of a Riemannian space V"

with non vanishing scalar curvature is not a homothetic transfomation in S"
1}, Ur does not vanish.

COROLLARY. The homothetic transformation of a Riemannian space V"

with non vanishing scalar curvature is a moiton in S".

After some more direct calculation, the Lie derivative of n‘i-k 1s given by

(2.12) £7r;k=£ {}k} T (Aiv'ku_ R;ku)éﬂ T HmiHmﬂ:k g:j

" ' ' & '
—H ﬂHmj:k El::.-::; Hmleﬂ-'jg ?k_]"ﬂm Hmﬂ:i-'k ga

"“HmiH"anj;k 24 ¢“

ma:bh " e

If the equation H ii=9g&;; holds, the equations (2. 8) and (2.12) may be
written as

(2.13) £Cjk=£gjk—2¢9"l‘§9;k g_i »

(2'14) £7r} — {;:k] +g0_l go:j;k &i-—@-zgo;j (p;k El +¢’_i¢’;j éi;k!
where the function ¢ of x is not equal to zero. Moreover by the equation (1. G)
we have

(2. 15) LA =£RY, .

Let us call the infinitesimal conformal transformation, the homothetic trans-
formation, and the pseudo-homothetic transformation satisfying the equation

H;;=9g&;; in V" “special conformal”, “special homothetic” and “special pseudo-
homothetic” respectively.
Now let us find out the condition that a special infinitesimal conformal trans-

formation in V" is also a conformal transformation in (2.16). If the conformal

transformation £g;, =0g; in V" is conformal in Sn there exists a function ¥
satisfying the following

(2. 16) £Cjk ='|lfcj'k .
By the equation (2.16) and (2.10), we have
(2.17) W:U@ﬂz_%@'a@;k 5k.

Conversely, if the equation (2.17) and the first equation of (2.6) are satisfied,
the equation (2.16) should hold if the function ¢ satisfies the following equation:
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(2.18) 0.0 & =101 & -
Hence we have

THEOREM 4, If the equation (2.17) and (2.18) hold simultaneously, the
special infinitesimal conformal transformation in V" is a conformal one in

S*.
By the equation (2.15) we have

THEOREM 5. A special pseudo-homothetiic transformation in V" is a pseudo-

homothetic transformation in S".

For a special homothetic transformation in V", if it is a homothetic trans-

formation in S", by the equations (2.14), (2.17) and (2.18) we have following
equation

2 k
(2.19) (D’I(O'—-'—%—' & 04 log ¢)=0

0
where 0,% = aﬁ,n Hence we have

THEOREM 6. If a special homothetic transformation in V" is a homothetic

one in S", £ 0, logp is a comstanti f ¢ is not a constant.

We treat here another property of S". Let &, ..; be any harmonic tensor of
V", the following equations hold [3]:
(2' 20) E[ﬂﬁ...cd;ﬂl]zo » gaﬂl Eﬂb'“(}'d;m:o’

and &£g...q 18 skew symmetric in all the indices. From the equation (1.9), we
have

(2' 21) Eab---cdll — Sm!:a---m::!.:i! _Hmj(Hma:l ‘Sjb-ucd

+H1ﬂb;l ng...cd "'—I—Hmd;l gﬂb"'f}j) .
By Codazzi relation (1.2) we have

(2.22) $fabcdm] =0 >

and &, . m =0 1f the following equation hold:
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(2. 23) HmJ ék[b'“ﬂdHliﬂk];j]ZO -
Hence we have

THEOREM 7. A mnecessary and sufficient condition that a harmonic Pensor
¢ bcg 12 V" o be @ harmonic one in S" is given by the equation (2.23).

COROLLARY. If we suppose the existence of the equation H,;=¢;; and ¢

'S not constant, then a harmonic tensor in V" 1s also a harmonic one in &,
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