LATTICE ORDERED COMMUTATIVE GROUPS OF THE SECOND KIND

By Tae Ho, Choe

Introduction. By a partially (or lattice) ordered commutative group (po.c.g. (or l.o.c.g.)) we mean a set G endowed with a binary operation \cdot and a binary relation \leq such that the following axioms are satisfied

- (i) G is a commutative group with respect to \cdot ,
- (ii) G is a partially ordered (or lattice) by \leq ,
- (iii) if a and b are elements of G such that $a \le b$, then $ac \le bc$ for all c in G.

A. H. Clifford [1] has defined the concepts of conserver element and inverter element: in a totally ordered commutative semigroup, an element c is called conserver if a < b implies $ca \le cb$, and an c inverter if a < b implies $ca \ge cb$. In this note, we define similar concepts as following. Let G satisfy just (i) and (ii) above. In G, an element c is conserver if $a \le b$, $a \ddagger b$ (means a and b are incomparable) implies $ca \le cb$, $ca \ddagger cb$, respectively, an inverter if a < b (means $a \le b$ but $a \ne b$), $a \ddagger b$ implies ca > cb. $ca \ddagger cb$, respectively. G will be called a partially (or lattice) ordered commutative group of the second kind (=po.c. g. II(or l.o.c.g. II)) if G satisfies (i), (ii) and

(iv) Every element of G is either a conserver or an inverter or not both. We call an element d destroyer if d is neither conserver nor inverter, i.e. if d is a destroyer, then there exists a pair of elements x and y in G such that x < y and $dx \sharp dy$. We will give some typical examples of a destroyer in §4. And we shall call po.c.g. II G simply ordered commutative group of the second kind (s.o.c.g. II) if every element of G is either a consever or an inverter, and G simply ordered.

Let G_i $(i=1,2,\dots,n)$ be a s.o.c.g. II. By the cardinal product ΠG_i of G_i 's we mean the set of all elements (x_1,\dots,x_n) , x_i in G_i , where $(x_1,\dots,x_n) \leq (y_1,\dots,y_n)$ if and only if $x_i \leq y_i$ for all i. The class ΠG_i becomes a group if we define $(x_1,\dots,x_n) \cdot (y_1,\dots,y_n) = (x_1y_1,\dots,x_ny_n)$ for $x_i, y_i \in G_i$, Moreover, ΠG_i becomes a l.o.c.g. II. In §2, we deal some properties of l.o.c.g. II. And in §3, we shall investigate the necessary and sufficient conditions that a l.o.c.g. II is group-isomorphic to a cardinal product of some s.o.c.g. II's.

§ 2 Some properties of 1.o.c.g. II's Let G be a 1.o.c.g. II. Throughout this paper, A, B and D will denote the set of all conservers, inverters and destroyers, respectively. Evidently, $A^2 \subset A$, $AB \subset B$, $B^2 \subset A$, $A^{-1} \subset A$, $B^{-1} \subset B$, $AD \subset D$, hence $D^{-1} \subset D$, where AB denotes the set of all elements ab, (a in A, b in B). Clearly, by definition, A, B and D are disjoint each other.

The following Lemmas are obvious.

[LEMMA 1] A, $A \lor B$ are both subgroups of G.

[LEMMA 2] If $x \in A$ and $y \in B$, then

- (i) $x(\alpha \cup \beta) = x\alpha \cup x\beta$ for any α , $\beta \in G$ and dually,
- (ii) $y(\alpha \cup \beta) = y\alpha \cap y\beta$ for any α , $\beta \in G$ and dually.

[LEMMA 3] Let G be a l.o.c.g.II. A is a dual ideal (or ideal) of G if and only if e < x (or e > x) implies $x \in A$. Where e is an identity of G.

[PROOF] Assume A is a dual ideal. Then clearly, we see that e < x implies $x \in A$. Conversely, assume e < x implies $x \in A$. For $x \in A$ and $g \in G$, since $e < x \le x \cup g$, we have $x \cup g \in A$. And we have $a \cap b \in A$ for any $a, b \in A$. For, since $a \le a \cup b$, we have $a \cup b \in A$. Hence $(a \cup b)^{-1} \le a^{-1}, b^{-1}$. If $c \le a^{-1}, b^{-1}$, then we see $(a \cup b)^{-1} \cup c \le a^{-1}, b^{-1}$. Since $(a \cup b)^{-1} \cup c \in A$, $a \cup b \le [(a \cup b)^{-1} \cup c]^{-1}$, i. e. $(a \cup b)^{-1} \cup c \le (a \cup b)^{-1}$. Hence $c \le (a \cup b)^{-1}$, i. e. $(a \cup b)^{-1} = a^{-1} \cap b^{-1}$. Thus we have $a \cap b \in A$. i. e. A is a dual ideal, as desired. A < B means a < b for all a in A, b in B

[THEOREM 1] Let G be a l.o.c.g.II. Then

- (i) A, B are anti-order isomorphic
- (ii) D is the sum of some dA's, where d is a destroyer.
- (iii) if e < x implies $x \in A$, then A is an l-subgroup of G

[PROOF] Let b be an element of G. Then bA = B. For, since $bA \subset BA \subset B$, we have $bA \subset B$. And $b_1 = bb^{-1}b_1$ for any $b_1 \in B$. Thus $b_1 \in bA$. Hence $B \subset bA$. The mapping f(a) = ba (a in A, b is a fixed element of B) is a one-to-one and anti-order isomorphism by (ii) of Lemma 2, i.e. (i) holds. Since A is a subgroup of G, G is the sum $A \lor bA \lor dA \lor \cdots$ (disjoints), where $b \in B$, $d \in D$. Therefore D is the sum of some dA's. (iii) is obvious, by Lemma 1.2.

A destroyer d is called proper if for any a < b in G, da # db.

[THEREM 2] Let G be a po.c.g.II in which any destroyer is proper. Then A and B are convex subsets of G. (a subset S of G is convex if $\alpha, \beta \in S$ and $\alpha < x < \beta$ implies $x \in S$). [PROOF] Suppose $\alpha < x < \beta$ (α , β in A).

- (i) If $x \in B$, $\alpha x < \alpha \beta$. Since $\alpha < \beta$ implies $\alpha x > \beta x$, we have $\beta x < \alpha \beta$ i.e. $x < \alpha$. It is contrary to $\alpha < x$.
- (ii) if $x \in D$, $\alpha x < \alpha \beta$. Since $e < \alpha^{-1}x < \alpha^{-1}\beta$ and $\alpha^{-1}x \in D$, we have $\alpha^{-1}x \sharp \alpha^{-1}x\alpha^{-1}\beta$. while $\alpha^{-1}x < \alpha^{-1}\beta < \alpha^{-1}x\alpha^{-1}\beta$, we have a contradiction. Hence $x \in A$, i.e. A is a convex subset of G.

Suppose $\alpha < y < \beta$ (α , β in B). Since $\alpha^{-1} \epsilon B$, we have $e > y \alpha^{-1} > \beta \alpha^{-1}$. And e, $\beta \alpha^{-1} \epsilon A$, hence $y \alpha^{-1} \epsilon A$ i.e. $y \epsilon B$.

We proceed now to investigate the distributivity of the subset $A \lor B$.

[THEOREM 3] Let G be a l.o.c.g.II in which A < B, and e < x implies $x \in A$. Then the subset $A \lor B$ is a distributive sublattice of G.

[PROOF] Since, by Lemma 3, A is an 1-subgroup, and A and B are anti-order isomorphic, we see: A and B are both distributive sublattices of G. If $x,y,a\in A \lor B$, and $x\cap a=y\cap a$, $x\cup a=y\cup a$, then we can easily see x=y for any case. Hence $A\lor B$ is a distributive sublattice of G.

§ 3 Decomposition of po.c.g.ll into s.o.c.g.ll's Throughout this section, we assume B < A. By a simply ordered commutative group (=s.o.c.g.) we mean a group G satisfying (a) G is simply ordered, and (b) $a \le b$ (a, b in G) implies $ac \le lc$ for any $c \in G$, [3]. By a simply ordered commutative group of the second kind (=s.o.c.g.II), we mean a group G satisfying (α) G is simple ordered, and (β) every element of G is either a conserver or an inverter.

We can easily see that the set A of all conservers of a s.o.c.g. II becomes a s.o.c.g. Let B denote the set of all inverters of a s.o.c.g. II. And assume also B < A in this section.

Now we shall investigate the condition that po.c.g. II is to be a cardinal product of some s.o.c.g. II's.

Before beginning our study, we state the following Lemma similarly to the way used by A.H. Clifford in [1].

we shall call an element \mathcal{E} unit element in G if $\mathcal{E}^2 = e$.

[LEMMA 4] For given a s.o.c.g. G_1 , we can construct a s.o.c.g.II with an inverter unit element.

[PROOF] Let ρ be a convex congruence relation (see [1]) in G_1 and k an element of G_1 , such that $x\rho y$ implies kx=ky. Since G_1 is a group, we see x=y if $x\rho y$. Let G_2 be the set of congruence classes of G_1 mod ρ , and let ϕ be the

canonical mapping (see [1]) of G_1 onto G_2 . The order relation in G_2 is defined as the followings: $\phi(x) < \phi(y)$ if and only if x > y in G_1 .

Let $G=G_1 \bigvee G_2$ (disjoint) and order G so that $G_2 < G_1$ Define product in G as the followings: for $x, y \in G_1$, $x \phi(y) = \phi(x) y = \phi(xy)$, $\phi(x) \phi(y) = xy$.

We now show that the above-defined G is a s.o.c.g. II as desired. To see that G is a group. We first investigate the associativity of G with respect to above product; for example

$$\phi(x)y \cdot \phi(z) = \phi(xy) \cdot \phi(z) = xy \cdot z = x \cdot yz = \phi(x) \cdot \phi(yz) = \phi(x) \cdot y\phi(x)$$

$$\phi(x)\phi(y) \cdot \phi(z) = xy \cdot \phi(z) = \phi(xy \cdot z) = \phi(x \cdot yz) = \phi(x) \cdot yz = \phi(x) \cdot \phi(y)\phi(z) \quad \text{etc.}$$

And for any $\phi(x) \in G_2$, we have $\phi(x)\phi(x^{-1})=e$ i.e. $\phi(x^{-1})=(\phi(x))^{-1}$. Hence we see that G becomes a group with respect to the product of G_1 and above-defined products. And we easily see that every element of G_1 is a conserver and every element of G_2 an inverter in G. And clearly, $\phi(e)$ is an inverter unit of G.

In the n-dim. Euclidean space, the subset

$$F_n = \{(1, 1, ..., 1), (-1, 1, ..., 1), (1, -1, ..., 1), ..., (-1, -1, ..., -1)\}$$

becomes a l. o. c. g. II of order 2^n , if we define product and order relations in F_n as followings;

$$(a_1, \dots, a_n) \cdot (b_1, \dots, b_n) = (a_1b_1, \dots, a_nb_n)$$

 $(a_1, \dots, a_n) \leq (b_1, \dots, b_n)$ if and only if $a_i \leq b_i$ for all i .

Clearly, the element $(-1, -1, \dots, -1)$ is an inverter unit element of F_n . We call F_n fundamental 1.0.c.g. II.

[THEOREM 4] Let G be a po.c.g.II with an inverter unit element. And let G be group-isomorphic to a cardinal product of n s.o.c.g.II's with an inverte unit element. Then

- (i) The set A of all conservers of G is group-isomorphic to a cardinal product of n s.o.c.g.'s, and $(G:A)=2^n$.
- (ii) There exists a subgroup $\mathcal{F}_n = \{f_1(=e), f_2, \dots, f_{2^n}\}$ of G such that \mathcal{F}_n is isomorphic to F_n , and $f_i f_j \in A$ $(i \neq j)$.

Conversely, if (i) and (ii) hold in G, then we can construct a l.o.c.g.II which is a cardinal product of n s.o.c.g.II's such that is group-isomorphic to G.

[PROOF] Let G be a cardinal product $(=\Pi G_i)$ of n s. o. c. g. II G_i 's. Let A_i be the set of all conservers of G_i . Then we easily see that A is cardinal product ΠA_i of A_i 's. Since A_i is a s. o. c. g., A is the cardinal product of n s. o. c. g. 's. Let \mathcal{E}_i , e_i be an inverter unit, an identity of G_i , respectively. Then the subset $\mathcal{F}_n = \{(a_1, \dots, a_n) \mid a_i = e_i \text{ or } \mathcal{E}_i\}$ of ΠG_i is a sub-1. o. c. g. Il of order 2^n , and moreover \mathcal{F}_n is isomorphic to F_n . If (a_1, \dots, a_n) and (b_1, \dots, b_n) are two distinct elements of \mathcal{F}_n , then $(a_1, \dots, a_n) \cdot (b_1, \dots, b_n) \in \Pi A_i$. Since $(a_1, \dots, a_n)^{-1} = (a_1, \dots, a_n)$ for any $(a_1, \dots, a_n) \in \mathcal{F}_n$, $(a_1, \dots, a_n) \not\equiv (b_1, \dots, b_n)$ for mod ΠA_i . On the other hand, if $(x_1, \dots, x_n) \in \Pi G_i$, then there exists some elements (a_1, \dots, a_n) of \mathcal{F}_n such that $(x_1, \dots, x_n) \equiv (a_1, \dots, a_n)$ for mod A. Therefore $(G:A) = 2^n$. Hence (i) and (ii) hold in G.

Conversely, Assume (i) and (ii) hold in given po.c.g. II G. By (ii), the set A of G is group-isomorphic to a cardinal product ΠA_i of n s.o.c.g. A_i 's. By Lemma 5, we can construct a s.o.c.g. II G_i with an inverter unit element from each A_i . Now we must prove that G is group-isomorphic to the cardinal product ΠG_i of G_i 's. To see this, by the foregoing way, we make $\overline{\mathcal{J}}_n$ of ΠG_i , so that $\overline{\mathcal{J}}_n \approx F_n$. By (ii), \mathcal{J}_n of G is isomorphic to F_n . Thus $\overline{\mathcal{J}}_n \approx \mathcal{J}_n$. Since $G = A \vee f_2 A \vee \cdots \vee f_2^n A$, where $f_i \in \mathcal{J}_n$, and $\Pi G_i = (\Pi A_i) \vee f_2(\Pi A_i) \vee \cdots \vee f_2^n (\Pi A_i)$, where $f_i \in \overline{\mathcal{J}}_n$, the mapping: $f_i a \rightarrow f_i a$ is a group-isomorphism of G onto ΠG_i (G in G). Where G is a group-isomorphism of G onto G in G in

§ 4 Examples

[EXAMPLE 1] Let $E_n = \{(a_1, \dots, a_n) | a_i (\neq 0) \text{ is a real number}\}$. And we define order and porduct relations in E_n as the followings:

$$(a_1, \dots, a_n) \cdot (b_1, \dots, b_n) = (a_1b_1, \dots, a_nb_n)$$

 $(a_1, \dots, a_n) \leq (b_1, \dots, b_n)$ if and only $if \ a_i \leq b_i$ for all i .

Then E_n is a l.o.c.g. II with destroyers which are not proper.

[EXAMPLE 2] In the E_n , if we define order relation as followings (a_1, \dots, a_n) $\leq (b_1, \dots, b_n)$ if and only if either $a_i = b_i$ for all i or $a_i < b_i$ (but $a_i \neq b_i$) for all i. Then E_n is a l.o.c.g. II. And every destroyer is proper.

[EXAMPLE 3] Let G be the set of all one valued real functions f(x) and it's inverse function $f^{-1}(x)$ defined on [0,1] which are having at most finite number discontinuous points, and $f(x) \neq 0$ and $f^{-1}(x) \neq 0$ for all $x \in [0,1]$. Then G becomes a group under ordinary product of functions. Moreover one defines the order in G such that $f(x) \leq g(x)$ means $f(x) \leq g(x)$ for all x on [0,1]. Then G is a l.o.c.g. II with destroyers which are not proper.

[EXAMPLE 4] In the G of example 3, one defines the order in G such that $f(x) \le g(x)$ means either f(x) = g(x) or f(x) < g(x) for all x in [0,1]. Then every destroyer in G is proper.

Dec. 21, 1960

Mathematical Department
Liberal Arts and Science College
Kyungpook University.

REFERENCES

- [1] A.H. Cifford, Ordered commutative semigroups of the second kind, Proc. Amer. Math. Soc. vol. 9 (1958) pp. 682-687
- [2] A.H. Cifford, Totally ordered commutative semigroups, Bull. of Amer. Math. Soc.vol. 64 (1959).
 - [3] G. Birkhoff, Lattice thory, rev.ed. Now York, (1948)