DIRECT COMPLEXIFICATION OF A RIEMANNIAN

 MANIFOLD INTO A KAEHLERIAN MANIFOLDBy Sang-Seup Eum

1. Introduction.

We consider a complex analytic n-dimensional manifold whose complex analytic structure $\left(z^{\alpha}, z^{\bar{\alpha}}\right)\left(z^{\bar{\alpha}}=\bar{z}^{\alpha} ; \alpha, \beta, \gamma \cdots=1,2, \cdots, n ; \bar{\alpha}, \bar{\beta}, \bar{\gamma}, \cdots\right.$ $=\overline{1}, \overline{2}, \cdots, \bar{n}$) was given by the relations [1],[2]
(1. 1) $\quad z^{\alpha}=x^{\alpha}+i x^{\alpha}, \quad z^{\alpha}=x^{\alpha}-i x^{\alpha}$,
where $\left(x^{A}\right)=\left(x^{\alpha}, x^{\bar{\alpha}}\right)(A, B, C, \cdots=1,2, \cdots, n, \overline{1}, \overline{2}, \cdots, \bar{n})$ is a system of coordinate neighborhoods of a real $2 n$-dimensional manifold $X_{2 n}$.

By considering that (1.1) is a transformation of coordinates, the real Riemannian metric $d s^{2}$ in $X_{2 n}$ is related by

$$
\begin{equation*}
d s^{z}=b_{A B} d x^{A} d x^{B}=g_{A B} d z^{A} d z^{B}, \quad g_{A B}(z)=\frac{\partial x^{C}}{\partial z^{A}} \frac{\partial x^{D}}{\partial z^{B}} b_{C D}(x) . \tag{1.2}
\end{equation*}
$$

If the metric tensor $g_{A B}$ is hybrid and self-adjoint, i.e.

$$
\begin{equation*}
g_{A B}=\left(0, g_{\alpha B}, g_{\bar{\alpha} B}, 0\right), \quad g_{\alpha B}=g_{B \alpha}=\overline{g_{\bar{\alpha} B}}=\overline{g_{B \bar{A}}} \tag{1.3}
\end{equation*}
$$

then the metric form (1.2) can be written in the form
(1. 4)
$d s^{2}=2 g_{\alpha \bar{B}} d z^{\alpha} d \bar{z}^{B}$
and a metric (1.4) satisfying (1.3) is called a Hermitian metric, and above complex analytic manifold to which a Hermitian metric was given, is called a Hermitian manifold H_{n}.

For the real Riemannian manifold $X_{2 n}$, we denote the metric tensor, Christoffel symbols, and curvature tensor by the notations $b_{A B},\left\{{ }_{B C}^{A}\right\}$ and R_{BCD} respectivery, and for the above Hermitian manifold H_{n}, by $g_{A B}$, $\Gamma_{B C}^{A}$ and $K_{B C D}^{A}$ respectively, then we have $\Gamma_{B \bar{y}}^{\alpha}=0$ (conj.). Moreover if a Hermitian metric satisfies the so-called Kaehlerian condition $\Gamma_{B \gamma}^{\alpha}=0$ (conj.), then it is called a Kaehlerian metric, and the complex analytic manifold with a Kaehlerian metric is called a Kaehlerian manifold $K_{n}[2]$.

The main purpose of this paper is characterization of the relations of
the geometric objects between a real manifold X_{2} and a Kaehlerian manifold K_{n} by means of the relations [3]
(1. 5)

$$
\begin{array}{ll}
\frac{\partial}{\partial z^{\alpha}}=\frac{1}{2}\left(\frac{\partial}{\partial \bar{x}^{\alpha}}-i \frac{\partial}{\partial x^{\bar{\alpha}}}\right), & \frac{\partial}{\partial \bar{z}^{\alpha}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{\alpha}}+i \frac{\partial}{\partial \bar{x}^{\bar{\alpha}}}\right), \\
\frac{\partial}{\partial x^{\alpha}}=\frac{\partial}{\partial z^{\alpha}}+\frac{\partial}{\partial \bar{z}^{\alpha}}, & \frac{\partial}{\partial x^{\bar{\alpha}}}=i\left(\frac{\partial}{\partial z^{\alpha}}-\frac{\partial}{\partial \bar{z}^{\alpha}}\right),
\end{array}
$$

under the transformation (1.1).

2. Main relations.

By direct calculation from (1.2) using (1.5), we get thg following results

$$
\begin{aligned}
& g_{\alpha \beta}(z)=\frac{1}{4}\left[b_{\alpha \beta}(x)-b_{\bar{\alpha} \bar{B}}(x)\right]+\frac{i}{4}\left[b_{\alpha_{\bar{B}}}(x)+b_{\bar{\alpha}_{B}}(x)\right], \\
& g_{\alpha \bar{B}}(z)=\frac{1}{4}\left[b_{\alpha \beta}(x)+b_{\bar{\alpha} \bar{B}}(x)\right]+\frac{i}{4}\left[b_{\alpha_{\bar{B}}}(x)-b_{\bar{\alpha} B}(x)\right], \\
& g_{\bar{\alpha} B}(z)=\frac{1}{4}\left[b_{\alpha \beta}(x)+b_{\bar{\alpha} \bar{B}}(x)\right]-\frac{i}{4}\left[b_{\alpha_{\bar{B}}}(x)-b_{\bar{\alpha} B}(x)\right], \\
& g_{\bar{\alpha} \bar{B}}(z)=\frac{1}{4}\left[b_{\alpha \beta}(x)-b_{\bar{\alpha} \bar{B}}(x)\right]-\frac{i}{4}\left[b_{\alpha \bar{B}}(x)+b_{\bar{\alpha} B}(x)\right],
\end{aligned}
$$

then, the tensor $g_{A B}$ is self-adjoint.
If the metric tensor $g_{A B}$ is hybrid, we have

$$
(2.1) \quad b_{\alpha \beta}=b_{\bar{\alpha} B}, \quad b_{\alpha \bar{B}}=-b_{\bar{\alpha} B} \text {, }
$$

and conversely. Then we get the follwing

THEOREM 2.1. A necessary and sufficient condition that the metric tensor $g_{A B}$ which is related by (1.2).to the real Riemannian metric tensor $b_{A B}$ be a Hermitian one, is the matrix $\left(b_{A B}\right)$ is the following form:

$$
\left(b_{A B}\right)=\left(\begin{array}{cc}
P & Q \\
-Q & P
\end{array}\right)
$$

where the $(n \times n)$ matrix $P=\left(b_{\alpha \beta}\right)$ is symmetric, and the $(n \times n)$ matrix $Q=\left(b_{\alpha_{\bar{B}}}\right)$ is skew-symmetric.

Therefore the Hermitian metric tensor is as follows
(2. 2)

$$
g_{\alpha \bar{B}}=\frac{1}{2}\left(b_{\alpha B}+i b_{\alpha \Xi}\right), \quad \text { (conj.) }
$$

$$
\begin{equation*}
g^{\alpha \bar{B}}=2\left(b^{\alpha \beta}-i b^{\alpha \bar{B}}\right) \tag{conj.}
\end{equation*}
$$

where $g^{A B}$ is also self-adjoint, and

$$
\begin{array}{ll}
b^{\alpha \beta}=b^{\bar{\alpha} \bar{B}}, & b^{\alpha_{B}}=-b^{\bar{\alpha} B}, \\
g_{\alpha \bar{B}} g^{\bar{B} \gamma}=\delta_{\alpha}^{\gamma}, & b_{A B} b^{B C}=\delta_{A}^{C} .
\end{array}
$$

By using (1.5) and (2.1), the Kaehlerian condition $\Gamma_{\beta \bar{\gamma}}^{\alpha}=0$ become equivalent to

$$
\begin{aligned}
& \frac{\partial b_{\alpha \beta}}{\partial x^{\gamma}}-\frac{\partial b_{\overrightarrow{\tilde{\gamma}} \beta}}{\partial x^{\vec{\gamma}}}=\frac{\partial b_{\gamma \beta}}{\partial x^{\alpha}}-\frac{\partial b_{\vec{\gamma} \beta}}{\partial x^{\bar{\alpha}}}, \\
& \frac{\partial b_{\alpha \beta}}{\partial x^{\vec{\gamma}}}+\frac{\partial b_{\vec{\alpha} \beta}}{\partial x^{\gamma}}=\frac{\partial b_{\gamma \beta}}{\partial x^{\bar{\gamma}}}+\frac{\partial b_{\vec{\gamma} \beta}}{\partial x^{\alpha}},
\end{aligned}
$$

and by calculating the Christoffel symbols under the Kaehlerian condition, we have
(2.3)

$$
[\gamma, \alpha \beta,]-[\bar{\gamma}, \bar{\alpha} \beta]=0, \quad[\gamma, \bar{\alpha} \beta]+[\bar{\gamma}, \alpha \beta]=0,
$$

where

$$
[C, A B]=\frac{1}{2}\left(\frac{\partial b_{B C} C}{\partial x^{A}}+\frac{\partial b_{A C}}{\partial x^{B}}-\frac{\partial b_{A B}}{\partial x^{C}}\right),
$$

and then
(2. 4)
where

$$
\left\{\left\{_{B C}^{A}\right\}=b^{A D}[D, B C]\right.
$$

Hence we have the following

THEOREM 2.2. A necessary and sufficient condition that the metric related by (1.2) be a Kaehlerian metric, is that $b_{A B}$ and $\left\{{ }_{B C}^{A}\right\}$ are the forms (2.1) and (2.4) respectively.

Therefure, the Christoffel symbols in the Kaehlerian manifold \boldsymbol{K}_{n} are the form

$$
\begin{equation*}
\text { (2. 5) } \quad \Gamma_{B \gamma}^{\alpha}=\left\{\left\{_{\beta \gamma}^{\alpha}\right\}-i\left\{_{B \gamma}^{\alpha}\right\},\right. \tag{conj.}
\end{equation*}
$$

i.e.
(2.6) $\quad\left\{\begin{array}{c}\alpha \\ \alpha \gamma\end{array}\right\}=\frac{1}{2}\left(\Gamma_{\beta \gamma}^{\alpha}+\overline{\Gamma_{B \gamma}^{\alpha}}\right), \quad\left\{\begin{array}{l}\alpha \bar{\gamma}\end{array}\right\}=\frac{i}{2}\left(\Gamma_{\beta \gamma}^{\alpha}-\overline{\Gamma_{\beta \gamma}^{\alpha}}\right)$.

By calculating the curvature tensor directly from (2.6) under the Kaehlerian condition, we have the following essential components of $R^{A}{ }_{B C D}$

$$
\begin{aligned}
& R_{\beta \gamma \delta}^{\alpha}=\frac{i}{2}\left(-K_{\beta \gamma \delta}^{\alpha}+K_{\bar{\beta} \bar{\gamma} \delta}-K_{\beta \delta \bar{\gamma}}^{\alpha}+K_{\bar{\beta} \delta \gamma}\right),
\end{aligned}
$$

(2. 7)

$$
\begin{aligned}
& R^{\alpha}{ }_{B \gamma \delta}=\frac{i}{2}\left(K^{\alpha}{ }_{B V \delta}-K^{\alpha_{B F \delta}}-K_{B \delta T}^{\alpha}+K_{B \delta \gamma}\right),
\end{aligned}
$$

and the other components are related to (2.7) by

$$
\begin{align*}
& R_{B \overrightarrow{7} \delta}^{A}=-R_{B 7 \%}^{A}, \quad R_{B \overrightarrow{7} \bar{\delta}}^{A}=R_{B \gamma \delta}^{A}, \\
& R^{\bar{\alpha}_{B C D}}=-R_{{ }_{B C D}}^{\alpha}, \quad R^{\alpha_{B C D}}=R_{B C D}^{\alpha}, \tag{2,8}
\end{align*}
$$

where $K^{\alpha}{ }_{B r \delta}$ is the curvature tensor in the Kaehlerian manifold K_{n} i.e.

$$
K_{\beta \gamma \delta}^{\alpha}=\frac{\partial}{\partial \overline{\bar{z}}^{\delta}} \Gamma_{\beta \gamma}^{\alpha} \quad \text { (conj.) }
$$

and $R_{B C D}$ was defined by

$$
R_{B C D}^{A}=\frac{\partial}{\partial X^{D}}\left\{\left\{_{B C}^{A}\right\}-\frac{\partial}{\partial X^{C}}\left\{\left\{_{B D}^{A}\right\}+\left\{\{ _ { B C } ^ { E } \} \left\{\left\{_{E D}^{A}\right\}-\left\{{ }_{B D}^{E}\right\}\left\{A_{E C}^{A}\right\} .\right.\right.\right.\right.
$$

From (2.7) we have
(2. 9)

$$
R_{\bar{B} Y \delta}^{\alpha}-R_{E \delta \gamma}^{\alpha}=0, \quad R_{\beta \gamma \delta}^{\alpha}+R_{\beta 亏 \bar{\gamma} \delta}^{\alpha}=0,
$$

then, the Ricci tensr $R_{B C}=R_{B C A}^{A}$ is the form

$$
\begin{equation*}
R_{B T}=R_{\bar{B} \bar{\gamma}}, \quad R_{B \bar{\gamma}}=-R_{\bar{B} \varphi} \tag{2.10}
\end{equation*}
$$

therefore, we have the following

THEOREM 2.3. In the real Riemannian manifold $X_{2 n}$ whose metric is related by (1.2) to the metric of the Kaehlerian manifotd K_{n}, the matrix $\left(R_{A B}\right)$ is same type as the matrix $\left(b_{A B}\right)$ i.e.

$$
\left(R_{A B}\right)=\left(\begin{array}{cc}
S & T \\
-T & S
\end{array}\right)
$$

where the $(n \times n)$ matrix $S=\left(R_{\alpha \beta}\right)$ is symmetric, and the $(n \times n)$ matrix $\quad T=\left(R_{\alpha B}\right)$ is skew-symmetric.

By (2.7), we have
and the other components of $R_{A B C D}$ are obtained by the following relations which are given by (2.8)

$$
\begin{array}{ll}
R_{A B \bar{\gamma} \delta}=-R_{A B Y \delta}, & R_{A B \bar{\gamma} \delta}=R_{A B \gamma \delta}, \tag{2.12}\\
R_{\bar{\alpha} B C D}=-R_{\alpha \bar{B} C D}, & R_{\bar{\alpha} \bar{B} C D}=R_{\alpha B C D},
\end{array}
$$

then, the curvature tensor and the Ricci tensor in the Kaehlerian mani fold K_{n} are the following forms

$$
\begin{equation*}
K_{B \gamma \delta}^{\alpha}=\frac{1}{2}\left[\left(R_{B \gamma \delta}^{\alpha}+R_{\overline{\Sigma \gamma \delta}}^{\alpha}\right)+i\left(R_{B \gamma \delta}^{\alpha}-R_{\bar{\delta} \delta}^{\alpha}\right)\right], \tag{2.13}
\end{equation*}
$$

$$
K_{\bar{\alpha} \beta \gamma \bar{\delta}}=\frac{1}{4}\left[\left(R_{\alpha \beta \gamma \delta}-R_{\bar{\alpha} \beta \gamma \bar{\delta}}\right)+i\left(R_{\bar{\alpha} \beta \gamma \delta}+R_{\alpha \beta \gamma \delta}\right)\right],
$$

$$
\begin{equation*}
K_{\alpha \bar{B} \gamma \bar{\delta}}=\frac{1}{4}\left[\left(R_{\alpha \beta \gamma \delta}-R_{\alpha \bar{\beta} \gamma \bar{\delta}}\right)+i\left(R_{\alpha \bar{\xi} \gamma \delta}+R_{\alpha \beta \gamma \delta}\right)\right], \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
K_{B \bar{\gamma}}=\frac{1}{2}\left(R_{B \gamma}+i R_{B \bar{\gamma}}\right) . \tag{2.15}
\end{equation*}
$$

3. Harmonic and Killing vectors

For a contravariant vector η^{A} in the real Riemannian manifold $X_{2 n}$, we can put ξ^{A}, as a contravariant vector in the Kaehlerian manifold \boldsymbol{K}_{n} by the following relations
(3. 1)

$$
\eta^{A}=\frac{\partial x^{A}}{\partial z^{B}} \boldsymbol{\xi}^{B}
$$

then, by (1.5) we get

> (3. 2)

$$
\xi^{\alpha}=\eta^{\alpha}+i \eta^{\alpha}, \quad \xi^{\bar{\alpha}}=\eta^{\alpha}-i \eta^{\alpha}
$$

By denoting " \mid "and "," as the covariant differentiations with respect to the tensor $b_{A B}$, and the Kaehlerian metric tensor $g_{A B}$ respectively, we have

$$
\begin{align*}
& R_{\alpha \beta \gamma \delta}=K_{\alpha \bar{\beta} \delta \delta}-K_{\alpha \xi \delta \gamma}+K_{\bar{\sigma} \beta \gamma \delta}-K_{\vec{\alpha} \beta \delta \vec{\gamma}}, \\
& R_{\alpha \beta \gamma \delta}=i\left(K_{\alpha \bar{\beta} \bar{\gamma} \delta}+K_{\alpha \bar{B} \delta \gamma}-K_{\bar{\alpha} \beta \gamma \delta}-K_{\bar{\alpha} B \delta \bar{\gamma}}\right), \tag{2.11}\\
& R_{\alpha \bar{B} \% \delta}=i\left(-K_{\alpha \bar{B} \bar{\gamma} \delta}+K_{\alpha \bar{B} \gamma}+K_{\bar{\alpha} \beta \gamma \bar{\delta}}-K_{\bar{\alpha} \beta \delta \bar{\gamma}}\right),
\end{align*}
$$

$$
\begin{aligned}
& \gamma_{\gamma_{1 \beta}^{\alpha}}=\frac{1}{2}\left(\xi^{\alpha},{ }_{B}+\xi^{\alpha}{ }_{, \bar{B}}+\xi^{\hat{\alpha},{ }_{\beta}}+\xi^{\bar{\alpha}}{ }_{, \bar{B}}\right) \\
& \eta_{1 \bar{B}}^{\alpha}=\frac{i}{2}\left(\xi^{\alpha},{ }_{B}-\xi^{\alpha}{ }_{, \bar{B}}+\xi^{\bar{\alpha}}{ }_{, \beta}-\xi^{\bar{\alpha}}{ }_{, \bar{B}}\right)
\end{aligned}
$$

(3. 3)

$$
\begin{aligned}
& r_{i, \bar{\alpha}}=\frac{i}{2}\left(-\xi_{, B}^{\alpha}-\xi^{\alpha}{ }_{B B}+\xi^{\bar{\alpha}}, B+\xi^{\bar{\alpha}},{ }_{B}\right) \\
& \eta_{{ }_{1 \bar{B}}^{\bar{\alpha}}}=\frac{1}{2}\left(\xi^{\alpha}, B-\xi_{, B}^{\alpha}-\xi^{\bar{\alpha}}, B+\xi^{\bar{\alpha}},{ }_{\bar{B}}\right)
\end{aligned}
$$

(3. 4)

$$
\eta^{A}{ }_{1 A}=\xi^{A} \cdot{ }_{A}
$$

and furthermore the relations
$(3,5)$

$$
b^{B C} \eta^{A}{ }_{|B| C}-R_{B}^{A} \eta^{B}=0,
$$

which are a necessary and sufficient condition that a vector η^{A} in a compact orientable $X_{2 n}$ be a harmonic one [2] [4], are equivalent to
(3. 6)

$$
g^{B C} \xi^{\alpha}, B, C-g^{\alpha \tilde{B}} X_{B \gamma} \xi^{\gamma}=0 .
$$

(conj.)

Similarly, the relations
(3. 7)

$$
b^{B C} \eta_{{ }_{1 B} \mid C}+R_{B}^{A} \eta^{B}=0, \quad \eta_{1 A}^{A}=0 .
$$

which are a condition that η^{A} be a Killing vector [2], [4], are equivalent to

$$
(3,8) \quad g^{B C} \xi^{\alpha}, B, C+g^{\alpha_{\bar{B}}} K_{\bar{B} \gamma} \xi^{\gamma}=0,(\operatorname{conj} .) \quad \xi^{A}, A=0,
$$

therefore, if a vactor η^{A} in a compact orientable $X_{2 n}$ whose metric is related by (1.2) to the metric of K_{n}, is a harmonic or Killing one, then a vector ξ^{A} in a compact K_{n} is also harmonic or Killing one respectively. and conversely. By putting
(3. 9)

$$
\eta_{A}=b_{A B} \eta^{B}, \quad \xi_{A}=g_{A B} \xi^{B}
$$

we have by (3.3)

$$
\begin{align*}
& \eta_{\alpha \mid \beta}=\xi_{\alpha, \beta}+\xi_{\alpha, \bar{B}}+\xi_{\bar{\alpha}, \beta}+\xi_{\bar{\alpha}, \bar{B}}, \\
& \eta_{\alpha \mid \bar{B}}=i\left(\xi_{\alpha, \beta}-\xi_{\alpha, \bar{B}}+\xi_{\bar{\alpha}, \beta}-\xi_{\bar{\alpha}, \bar{B}}\right), \\
& \eta_{\bar{\alpha} \mid B}=i\left(\xi_{\alpha, B}+\xi_{\alpha, \bar{B}}-\xi_{\bar{\alpha}, \beta}-\xi_{\bar{\alpha}, \bar{B}}\right), \tag{3.10}\\
& \eta_{\bar{\alpha} \mid \bar{B}}=-\xi_{\alpha, \beta}+\xi_{\alpha, \bar{B}}+\xi_{\bar{\alpha}, \beta}-\xi_{\bar{\alpha}, \bar{B}} .
\end{align*}
$$

on the other hand, if ξ_{A} in a compact K_{n} is a harmonic vector, then by theorem 8.13 of [2], all ξ_{α} are analytic in (z^{α}) and all $\xi_{\bar{\alpha}}$ are analytic in (\bar{z}^{α}). And if ξ^{A} is a Killing vector and $\xi^{\alpha}{ }_{, \alpha}=0$, by theorem 8.19 of $\lceil 2]$, all ξ^{α} are analytic in (z^{α}), and all $\xi^{\bar{\alpha}}$ are analytic in (\bar{z}^{α}). Therefore, by (3.3) and (3.10) we have the following

THEOREM 3.1. If a vector ξ^{A} in a compact Kaehlerian manifold $K_{\text {, }}$, is a Killing one and $\xi^{\alpha}, \alpha=0$, then for the components η^{A} in a compact. orientable Riemannian manifold $X_{2 n}$ whose metric is related by (1.2) to the Kaehlerian metric, the matrix $\left(\eta_{1 B}^{A}\right)$ is the following form:

$$
\left(\eta_{1 B}^{A}\right)=\left(\begin{array}{cc}
C & D \\
-D & C
\end{array}\right)
$$

where

$$
C=\left(\eta^{\alpha}{ }_{1 \beta}\right), \quad D=\left(\eta^{\alpha}{ }_{1 B}\right) .
$$

Similarly, if ξ_{A} is a harmonic vector, the matrix $\left(r_{A \mid B}\right)$ is the following form:

$$
\left(\eta_{A \mid B}\right)=\left(\begin{array}{cc}
E & F \\
F & -E
\end{array}\right)
$$

where both $E=\left(\eta_{\alpha \mid \beta}\right)$ and $F=\left(\eta_{\alpha \mid \bar{B}}\right)$ are symmetric.

From (3.2) and (3.9), we obtain

$$
\begin{equation*}
\xi_{\alpha}=\frac{1}{2}\left(\eta_{\alpha}-i \eta_{\bar{\alpha}}\right), \quad \xi_{\bar{\alpha}}=\frac{1}{2}\left(\eta_{\alpha}+i \eta_{\bar{\alpha}}\right), \tag{3.11}
\end{equation*}
$$

and a vector η^{A} is called a conformal Killing vector if

$$
\begin{equation*}
\mathscr{L} b_{A B}=\eta_{A \mid B}+\eta_{B \mid A}=2 \phi b_{A B} \tag{3.12}
\end{equation*}
$$

where ϕ is a scalar function.
By using the relations (2.2) and (3.10), the condition (3.12) is equivalent to

$$
\xi_{\alpha, \beta}=0, \quad \xi_{\bar{\alpha}, \bar{B}}=0, \quad \xi_{\alpha, \bar{B}}=2 \phi g_{\alpha \bar{B}}, \quad \xi_{\bar{\alpha}, \beta}=2 \phi g_{\bar{\alpha} B},
$$

therefore we have the following

THEOREM 3.2. A vector $\boldsymbol{\eta}^{A}$ in a compact orientable Riemannian manifold $X_{2 n}$ is a conformal Killing vector, if and only if the vector ξ^{A} (which is related to η^{A} with (3.1)) in a compact Kaehlerian manifold K_{n}, satisfies the relations

$$
\xi_{A, B}=2 \phi g_{A B} .
$$

Finally, we consider the form

$$
\begin{equation*}
\mathscr{R}\left\{\left\{_{B C}^{A}\right\}=\eta_{|B| C}^{A}+R_{B C D}^{A} \eta^{D}\right. \tag{3.13}
\end{equation*}
$$

then, by the relations (2.4), (2.7) and (3.3) we have

$$
\xi^{\alpha}, B, \gamma=0, \quad \xi^{\bar{\alpha}}, B, \gamma=0, \quad \xi_{, B, 7}^{\alpha}=0, \quad \xi^{\bar{\alpha}}, B, \bar{\gamma}=0,
$$

furthermore we have

$$
\mathscr{E}\left\{{ }_{\beta \gamma}^{\alpha}\right\}=\frac{1}{2}\left(L \Gamma_{\beta \gamma}^{\alpha}+\overline{L \Gamma_{\beta \gamma}^{\alpha}}\right),
$$

$$
\begin{equation*}
\mathscr{H}\left\{\left\{_{\beta \mathcal{Z}}^{\alpha}\right\}=\frac{i}{2}\left(L \Gamma_{\beta \gamma}^{\prime \alpha}-\overline{L \Gamma_{\beta \gamma}^{\alpha}}\right),\right. \tag{3.14}
\end{equation*}
$$

where

$$
\begin{equation*}
L \Gamma_{\beta \gamma}^{\alpha}=\xi^{\alpha}, \beta, \gamma+K_{\beta \gamma \delta}^{\alpha} \xi^{\delta} \tag{3.15}
\end{equation*}
$$

(conj.)
then, the condition $\mathscr{E}\left\{{ }_{B C C}^{A}\right\}=0$ is equivalent to $L \Gamma_{\beta \gamma}^{\alpha}=0$. Therefore, if an infinitesimal point transformation

$$
' x^{A}=x^{A}+\eta^{A}(x) \delta t
$$

is an affine collineation in $X_{2 g}$, then an infinitesimal point transformation

$$
{ }^{\prime} z^{A}=z^{A}+\xi^{A}(z) \delta t
$$

is also an affine collineation in K_{n} and conversely [2].

Oct. 1959
Mathematical Department
Liberal Arts and Science College
Kyungpook University

REFERENCES

[1] K. Yano and I. Mogi: On real representations of Kaehlerian manifolds, Ann. of Math., Vol.61, No. 1 (1955).
[2] K. Yano and S. Bochner: Curvature and Betti numbers, Ann. of Math. Studies No. 32, Princeton (1953).
[3] William M. Boothby: Hermitian manifolds with zero curvature, Michigan Math. Journal Vol. 5 No. 2 (1958).
[4] K. Yano: Some integral formulas and their applications, Michigan Math. Journal Vol. 5 No. 1 (1958).

