ON A QUASI-ORDERED GROUP

By Tae Ho Choe

Introduction

By a quasi-order on a set is meant a reflexive, transitive binary relation \leq . In this paper we shall consider a quasi-ordered group in the following sense: A group Q is called a *quasi-ordered group* (=qo-group), when in Q is defined a quasi-order $a \leq b$, preserved under the group operation+:

 $a \leq b$ implies $a + c \leq b + c$ and $c + a \leq c + b$ for all c in Q. This seems to be a natural generalization of the usual concept of partial ordered group (=po-group).

Simple examples are provided with the followings

EXAMPLE 1. Let Q be the additive group of all real functions defined on the unit square $0 \le x$, $y \le 1$. And let $f \ge g$ meant that f(x, y) $\ge g(x, y)$ except on a set of measure zero (or except on a non-void fixed proper subset of the unit square).

EXAMPLE 2. Let Q be the additive group of all (n, n)-matrices with

real elements. And let $(a_{ik}) \ge (b_{ik})$ meant that $a_{ii} \ge b_{ii}$ for all *i* (diagonal elements).

This paper is divided into three sections. § 2 is concerned with definitions and the properties of qo-group which are slightly generalized theorem of po-groups and l-groups. And § 3 deals with completeness of quasi-ordered set with l.u.b.and g.l.b. of the subset in its interval topology, which is analogy to Frink's theorem on a lattice. And finally, we shall prove qo-group is homogeneous in its interval topology.

2. Definitions and qo-groups Let Q be a quasi-ordered set under binary relation \leq , and A be a subset of Q.

We write, [2]

ς

Tae Ho Choe

 $M(A) = \{ y \in Q : x \leq y \text{ for some } x \in A \}.$ $L(A) = \{ y \in Q : y \leq x \text{ for some } x \in A \}.$ $E(A) = L(A) \cap M(A)$

LEMMA 1 If Q is a qo-group, and A is a subgroup (normal subgroup) of Q, then E(A) is also a subgroup (normal subgroup).

The proof of Lemma 1 is trivial. And we omit the details.

Therefore, E(o) is a normal subgroup of Q, (where 0 is an identity of Q) which is called *the kernel* of Q.

E. Schröder has proved that the relation $x \equiv y$ which means $x \leq y$ and $y \leq x$ in a quasi-ordered set is an equivalent relation, and if equivalent elements are identified, \leq becomes a partial ordering. [1]

We can easily see that in a qo-group, x, y are equivalent elements if and only if $x-y \in E(o)$. Hence if all elements of the congruence class to which 0 belongs are identified with 0, the quasi-ordering \leq becomes a partial ordering. Thus we can partially order factor gorup $Q \not/ E$ (o) by defining E(a)(=a+E(o)) < E(b) if $E(a) \neq E(b)$ and a < b (i. e. $a \in E(b)$), Q / E(o) is then a po-group, and the canonical mapping $a \rightarrow$ E(a) is a homomorphism of Q onto Q / E(o) as a groups and a quasiordered sets. Hence we have the following theorem

THEOREM 1 Let Q be a qo-group, then the factor group Q/E(o)is a po-group. And the canonical mapping $a \rightarrow E(a)$ is a homomorphism of Q onto Q/E(o).

COROLLARY A qo-group Q is a po-group if and only if the kernel of Q be a single subset of zero of Q.

We now extend the theorems of po-groups and l-groups to the case of quasi-ordering.

THEOREM 2 Let Q be a qo-group with the kernel N, and Q⁺ the set of all positive elements: $a \ge 0$, in Q. Q⁺ has then following properties:

(i)
$$x \in Q^+$$
 and $-x \in Q^+$ if and only if $x \in N$

On a quasi-ordered group

49

(ii) If x, $y \in Q^+$, then $x + y \in Q^+$ (iii) For all $x \in Q^+ x + Q^+ = Q^+ + x$.

Conversely, if a group Q contains a normal subgroup N and a subset Q^+ of Q having the properties (i), (ii) and (iii). We can then introduce a quasi-order in Q so that it becomes a qo-group with the kernel N, defining $x \ge y$ if $x - y \in Q^+$ (or $-y + x \in Q^+$). (cf.[1] Theorem 1. P.214)

PROOF The former part is almost obvious.

We prove the converse. From (i) we get $o \in N \subset Q^+$, Thus we have the reflexive. Again, from (ii) and (iii) we have the transitivity and $a \leq b$ implies $a + c \leq b + c$ and $c + a \leq c + b$. Finally, we have to note that the normal subgroup N is the kernel of Q: For, $x \in N$, we get $x \in Q^+$, $-x \in Q^+$ from (i). Thus $x \in E(o)$ of Q. Conversely, $x \in E(o)$ implies $x \in Q^+$, $-x \in Q^+$, Thus, by (i) $x \in N$.

L.E. Ward [2] has defined that the concept of g.l.b. and l.u.b. of a quasi-ordered set, which seems to be a suitable generalization of the usual concept of complete lattice, as following :

Let y be an element of quasi-ordered set X is minimal (maximal), whenever $x \leq y$ ($y \leq x$) in X implies $y \leq x$ ($x \leq y$). And let A be a subset of quasi-ordered set X, The element $x \in X$ is an upper (lower) bound for A provided $a \leq x$ ($x \leq a$) for all $a \in A$. The element x is a least upper (greatest lower) bound for A if x is a minimal (maximal) element of the set of upper (lower) bounds of A, dnote by $\forall A$ ($\wedge A$). The quasi ordered set is $\forall \land$ quasi-odered ($\forall \land$ complete quasi-ordered) if it has both a g.l.b. and a l.u.b. of any two elements (of any subset). We denote by $\forall \land$ qos ($\forall \land$ cqos). We have to note that the operations $\land \land$, $\forall \land$ are not always unique operations in this case.

LEMMA 2 Let Q be a $\lor \land qo$ -group with the kernel N, Then the relation $x \equiv y$ which means $x - y \in N$ is a congruence relation : $x \equiv a$ and $y \equiv b$ implies $x \lor y \equiv a \lor b$ and $x \land y \equiv a \land b$.

PROOF $x \equiv a$ and $y \equiv b$ imply x - a, $y - b \in E(o)(=N)$, Thus $a \leq x$, $x \leq a$, $y \leq b$ and $b \leq y$. And we have L(x) = L(a) and L(y) = L(b).

*

Tae Ho Choe 50

Therefore, $L(x) \cap L(y) = L(a) \cap L(b)$. Since $x \bigvee y$ is a maximal element of $L(x) \cap L(y)$ and $a \lor b$ is also a maximal element of $L(a) \cap L(b)$, we have $x \wedge y \equiv a \wedge b$. And dually.

LEMMA 3 A qo-group Q with the kernel N is a $\bigvee \land qo$ -group if and only if for all $a \in Q$, all $x \in N$, $a \lor x$ exists

PROOF If Q is an $\bigwedge \bigvee qo$ -group, then obviously $a \bigvee x$ exists for all $a \in Q$, all $x \in N$. Conversely, let a, $b \in Q$. By the hypothesis, there exists the element $z \equiv o \bigvee (b-a)$ in Q. And we have $z+a \equiv a \bigvee b$. In fact, $z \equiv o \lor (b-a)$ implies that z+a is an upper bound of a, b. If $w \in M(a) \cap M(b)$, then we see easily that $w - a \in M(o) \cap M(b - a)$. If $w \leq z + a$ for some $w \in M(a) \cap M(b)$, since z is a minimal element of $M(o) \cap M(b-a)$ we have $z + a \leq w$. Thus the element z + a is a minimal element of $M(a) \cap M(b)$. On the other hand we see that $-(-a \vee -b)$ $\equiv a \wedge b$. The proof is complete.

Hence we have the following theorem

THEOREM 3 Let Q be a go-group with the kermel N, and if for all $a \in Q$, all $x \in N$ a $\forall x \in x$ ists. Then the factor group Q/N is an l-group.

٠.

COROLLARY In any $\bigwedge \bigvee qo$ -group with the kernel N, we have the following statements [1]

(i) $a - (a \wedge b) + b \equiv b \vee a$ (ii) $a+b\equiv(a \lor b)+(a \land b)$ (iii) $a \wedge (b \vee c) \equiv (a \wedge b) \vee (a \wedge c)$ (iv) $a \wedge b$, $a \wedge c \in N$ implies $a \wedge (b+c) \in N$ and dual.

3 Interval topology in a quasi-ordered set

L.E. Ward [2] has also suggested that it is possible to introdeuce an interval topology for quasi-ordered sets. It is that topology which has for a subbase for closed sets all sets of the form L(x) or M(x), where x is a member of the quasi-ordered set.

We now extend the result of Frink to the case of $\Lambda Vgo-set$. Let the closed interval [a, b] be set of all elements x with $a \leq x \leq b$.

On a quasi-ordered group

51

Then, if $a \equiv x$, $b \equiv y$ we have [a, b] = [x, y].

THEOREM 4 An $\land \lor Q a os Q is a \land \lor \lor Q c q os if and only if Q is compact in its interval topology.$

PROOF The necessity is easily given by the same manner of Frink. Conversely, let S be a non-null subset of Q. By the hypothesis and ([2] Theorem 1), Q has a minimal element. And each L(x) being compact, $\cap \{L(x) : x \in S\}$ is non-null compact set. Therefore, $\cap \{L(x) : x \in S\}$ has a maximal element, which is a g.l.b. of S. And dually.

LEMMA 4 Let Q be a qo-set and $a \in Q$. Then E(a) is the closure of single set $\{a\}$ i.e. $E(a) = \overline{a}$ in its interval topology.

PROOF Let C be a closed set including $\{a\}$. We assert that $E(a) \in C$. For, if $a \in L(x)$ (M(x)), then $E(a) \in L(x)$ (M(x)) by the transitivity of the qo-set. Since $E(a) = M(a) \cap L(a)$, E(a) is a closed set including $\{a\}$. Hence we have $E(a) = \overline{a}$.

Therefore, we have proved

THEOREM 5 A qo-sed Q is T_1 -space in its interval topology if and only if Q is a poset.

COROLLARY A go-group is T_1 -space in its interval topology if

and only if the kernel of the qo-group is the single set of zero of the qo-group.

E.S. Northam [4] has proved that an l-group need not always be a topological group. Therefore, it is also true that qo-group is not always a topological group. Finally, we investigate the homogeneity of qo-group in its interval topology. (Q is homogeneous if for any two elements p and q of Q, there exists a topological transformation of Q into itself which transform p into q)

LEMMA 5 Let Q be a qo-group. Suppose the mapping $f: x \rightarrow a + x$, where a is a fixed element of Q. Then f is a topological mapping of the space Q into itself in its interval topology.

PROOF It is obvious that f is one-to-one. Furthermore, f is contin-

Tae Ho Choe

uous. For, if S be a closed subset of Q, then S is the finite union of the intersection of arbitrary number of closed intervals L(x), M(x), $(x \in Q)$. We see easily that

a+L(x)=L(a+x), a+M(x)=M(a+x) for all $a, x \in Q$. Hence $f^{-1}(S)=-a+S$ is also the finite union of the intersection of arbitrary number of closed intervals L(-a+x), M(-a+x). Thus $f^{-1}(S)$ is also be a standard the mass is considered.

 $f^{-1}(S)$ is a closed set, which the proof is complete.

COROLLARY Let F be a closed subset, U an open set, P an arbitrary set and x some element of a qo-group. Then x+F is a closed set, while P+U is an open set.

THEOREM 6 A qo-group is homogeneous in its interval topology. Hence, from the homogeneity, it follows that it is sufficient to state and verify its local properties for a single element only.

September 29, 1959 Mathematcial Department Liberal Arts and Science College Kyungpook University

REFERENCES

[1] G. Birkhoff. Lattice theory, rey. ed., New York. (1948)

[2] L. E. Ward Jr. Partially ordered topological spaces, Proc. Amer. Math. Soc. vol 5 (1954) pp. 344-161

[3] O. Frink, Topology in lattice, Trans. Amer. Math. Soc. vol 51 (1942)

[4] E. S. Northam, The interval topology of a lattice, Proc. Amer. Math. Soc. vol 4 (1953)

[5] Pontrjagin, Topological groups, Princeton (1946)