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ON A QUASI-ORDERED GRÙUP 

By Tae Ho Choe 

lntroduction 

By a quasi.order on a set is meant a ref1exive, transitive binary 

relation 들. In this paper we sha1J consider a quasi-ordered group in 

the following sense: A group Q is called a quasi-ordeγed g‘roμp (=qo­

group) , when in Q is defined a quasi-order a글b ， preserved under the 

group operation + : 
a르b implies a + c들b+c and c 十 a르c + b for a11 c in Q. 

This seemS to be a natural generalization of the usûa1 concept of partia1 

ordered group ( po-group). 

Simple examples are provided with the followìngs 

EXAMPLE 1. Let Q be the additive group of al1 real functions defined 

on the unit square 0딜 x , y 딜1. And let f늘g meant that f(x , y) 

늘 g(x, y) except on a set of measure zero (or except on a non-void 

fixed proper subset of the unit square). 

EXAMPLE 2. Let Q be the additive group of a11 (n , n)-matrices with 

real elements. And let (aik)늘(bik ) meant that a;;늘b‘ i for all i (dia­

gonal elements). 

This paper is divided into three sections. S 2 is concerned with de­

finitions and the properties of qo-group which are slightly generalized 

theorem of po-groups and l-groups. And ~ 3 deals with completeness of 

quasi-ordered set with 1. u. b. and g. 1. b. of 삼le subset in its interva1 

topology , which is ana10gy to Frink’s theorem On a lattice. And finally, 
we shal1 prove qo-group is homogeneous in its interva1 topology. 

2. Definitions artd qo-groui;>s Let Q be a quasi-ordered set under 

bitiary relation 르， and A be a subset of Q. 

We write, [2J 
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M(A)={y ε Q:x르y 10γ $ome x ε A}. 

L(A) = {y E Q : y들X 101' some x E A}. 

E(A) =L(A) (ì M(A) 

LEMMA 1 11 Q is a qo-grouþ, and A is a sμbgrozψ (normal 

subgrouψ) 01 Q, then E(A) is a{so a subgrouþ (normal subgroμψ). 

The proof of Lemma 1 is trivia1. And we omit the details. 

Therefore, E(o) is a norma1 subgroup of Q, (where 0 is an identity of 

Q) which is ca11ed the kernel of Q. 

E. Schröder has proved that the relation x프y which means x흐y and 

y르x in a quasi-ordered set is an equivalent relation, and if equivalent 

elements are identified, 들 becomes a partial ordering. [lJ 

We can easily see that in a qo-group, X, y are equiva1ent elements 

if and only if x yE E(o). Hence if a11 elements of the congruence 

c1ass to which 0 belongs are identified with 0, the quasi-ordering 를 be­

comes a partial ordering. Thus we can partial1y order factor gorup Q/E 

(0) by defining E(a)( =a+E(o))<E(b) if E(a) =t= E(b) and a<b (i. e. 

a 듣 E(b)) , Q/E(o) is then a po-group, and the canonical mapping a• 

E(a) is a homomorphism of Q onto Q/E(o) as a groups and a quasi­

ordered sets. Hence we have the fol1owing theorem 

THEOREM 1 Let Q be a qo-grozφ， then the 1 actor gγoμÞ Q/E(o) 

is a þo-gγozψ . And the canonical maþþing a• E( a) is a homomorþhism 

01 Q onto Q/E(o) ι 

COROLLARY A qo-grouþ Q is a þo-grouψ il and only il the kernel 

01 Q be a single subset 01 zero 01 Q. 

We now extend the theorems of po-groups and l-groups to the case of 

quasi -ordering. 

THEOREM 2 Let Q be a qo-grouþ μJith the kernel N , and Q'f' the 
set 01 all þositive elements : a늘0， 쩌 Q. Q+ has then loltowing pro­

pertíes: 

Ci) x ξ Q+ and-x ξ Q+ il and only il x ε N 
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(ii) 11 x , yE Q+, then x+ ,)’ ε Q-t 

(iii) For all xE Q+ x+Q-t =Q++x. 

Conversely , il a groμP Q contains a normal sμbgrouP N and a subset 

Q+ 01 Q having the φroperties (i), (ii) and (iiiì. We can then introduce 

a quasi-order in Q so that it becomes a qo-groμP with the kernel N , 
defining x늘y if x y ε Q+ (or y+x ε Q+). (c!.[l] Theorem 1. 
P.214) 

PROOF The former part is a1most obvious. 

We prove the converse. From (i) we get 0 E NζQ1-， Thus we have 

암le reflexive. Again, from (ii) and (iii) we have the transitivity and 
a들b imp1ies a + c도b+c and c+a길c+b. Finally, we have to note that 
삼le nonnal subgsoup N is the kernel of Q : For, x ε N , we get x ε Q1-, 
-x ε Q+ from (i). Thus x ε E(o) of Q ‘ Conversely, x ε E(o) implies 
xe Q+, X ξ Q+ , Thus, by (i) x ε N. 

L. E. Ward [2] has defined that the concept of g. l. b. and 1. u. b. 
of a quasi-ordered set, which seems to be a suitable generalization of 
삼le usual concept of complete lattice, as following : 

Let y be an element of quasi-ordered set X is mi써mal (maximal), 

whenever x들y (y글x) in X implies y도x (x들y). And let A be a subset 

of quasi-ordered set X, The element x ξ X is an μpper (lower) bound 

for A provided a들x (x츠a) for aI1 a e A , The element x is a least μ:ppeγ 

(greatest lower) bound for A if x is a minimal (m강cimal) element of 
the set of upper (lower) bounds of A , dnote by VA (AA). The quasi 
ordered set is V ̂  qμaSl:'od ered (V ̂  comþlete quasi-ordered) if it has 
both a g. 1. b. and a 1. u. b. of any two elements (of any subset). 
We denote by V Aqos (V ̂ cqos). . We have to note that 삼le operations 
AA, VA are not always unique operations in this case. 

LEMMA 2 Let Q be a V ̂  qo-gγoμ:P with the keγ'nel N , Then the 

γ'elation x三y which means x-yeN is a congrμence rel ation : x프a 

and y프b imp1ies x V y드aVb atμ'i xAy三a^b.

PROOF x三a and y三b imply x-a, y b ε E(o)(=N) , Thus a도x， 

X길a， y듣b and b등y. And we have L(x)=L(a) and L(y)-L(b) • 

‘ 
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Therefore , L(x) (\L(y)=L(a) (\L(b). Since xVy isa maximal element 
of L(x) (\L(y) and aVb is also a maximal element' of L(a) (\L(b) , 
we have x^y三a^ b. And dual1y. 

LEMMA 3 A qo-group Q with the kernel N is a V ̂ qO-gγoup il 

and only if 101 all a ε Q, all x ε N , aVx exists 

PROOF If Q is an ^ V qo-group, then obviously a V x exists for a11 
a ε Q, 려1 x ε N. Conversely, leta, b E Q. By the hypothesis, there 
exists the element z프oV(b a) in Q. And we have z+a프aVb. 

1n fact , z三o V (b a) implies that z + a is an upper bound of a, b. If 

w ε M(a) (\M(b), then we see easi1y that w a ε M(o) (\M(b一 a). If 

w들z + a for some zν ε M( a) (\M(b) , since z is a mimimal element of 

M(o) (\M(ba) we have z l- a르w. Thus the element z + a is a minimal 

element of M(a) (ì M(b). On the other hand we see that -( -aV -b) 

프 a ̂  b. The proof is complete. 

Hence we have the íol1owing 상leorem 

THEOREM 3 LetQ be .a qo-group with theku'mel N , and if j <Jr 

alla E: Q, all x 흩 NaV x exists. Then the facto 'l’ :groμφ Q/N is an 

l-f{rlJtψ. 

COROLLARY ln any A V qo-grotφ with the ker'flèl N , we have the 

following statements [1] 

(1) a-(a^b)+b프bVa (ii) a+b드(aVb)+(a^b) 

(iii) a^(bVc)三(a^b)V(a^c)

(iv) a^b, αACE N imψlies a^(b+c) ε N and dμal. 

3 I"ntetval töþology ii1 a quasi-ordered set 

L. E. Ward [2J has also suggested that it is possible to introdeuce an 

iòterval topology for quasi-ordered sets. 1t is that topology wbich has for 

asubbase for dosed sets a11' sets of the fo!m L(씨 or M(x) , where 
x is a member of the quasi -ordered set. 

We hOW extend the result of Frink to the case of I~ V qo-set. 

Le't the closed interval r a, b Jbe set öf al1 elements x with a들X듣b. 

‘ 

’ 
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Then, if a三x ， b프y we have L a, bJ-[x, yJ. 

THEOREM 4 An ^ Vqos Q is. a ^ Vcqos il and only il Q is 

comþact in its interval toþology. 

PROOF The necessity is easily given by the same manner of Frink. 

Conversetv, let S be a non-nul1 subset of Q. By the hypothesis and ([2J 

Theorem 1), Q has a minimal element. And each L(x) being compact, 
(\ {L(x) :x E: S} is non-null compact set. Therefore, (\ {L(x):x ε S} has 

a maximal. element, which‘ is a g. l. b. of S. And dually. 

4 Let Q be a qo-set and α ε Q. T h.en E( a) is the closure 

01 single set {a} i. e_ E(a)=ã in its interval tOþology'. 

PROOF Let C be a c10sed set including {a}. We assert that E(α)，ζC. 

For, if a ξ L(x)‘ (A1(x)) , then E(a) ζ L(x) (M(x)) by the transitivity 

of the qo-set. Since E(a)=M(a)(\L(a) , E(a) is a closed set including 

{a}. Hence we have E(a)=ã. 

Therefore, we have proved 

THEOREM- 5 A qo-sed Q is TI-sþace in its interval toþology il 
and only il Q is a þoset. 

COROLLARY A qo-groμÞ is T1-sþace in its interval toφology if 

and only if the kernel 01 the qo-grouþ is the single set 01 ?eγ'0 01 
the qo-grouþ. 

E.S. Northam L4] has proved that an l-group need not always be a 

topological group. Therefore, it is also true that qo-group is not al",ays 
a topological g:r아lp. FinaIIy, we investigate the homogeneity of qo-group 

in its interval topology. (Q is homogeneoμs if for any two elemem1!s p 

and q of Q, there exists a topological transformation of Q into itself 
which transform Þ into q) 

LEMMA 5 Let Q be a qo-grouψ . Supþose the maþþing f: x• a+x, 
where a is a lixed element 01 Q. Then 1 is α tOþological maþþing 01 
the sþace Q into itsell in its interval toþology. 

PROOF 1t is obvious that 1 is one-to-one. Furthermore, 1 is contin-
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uous. For, if S be a c10sed subset of Q, then S is the finite union of 

the inter똥ction of arbitrary number of closed. intervals L(서， M(x) , 
(x E Q). We see easi1y that 

a+L(x)=L(a+x), a+M(x)=M(a+x) for all a, xE Q. 

Hence /-1 (5)= - a+5 is also the finite union of the intersection of 

arbitrary number of closed intervals L( -a+x), M( -a+x). Thus 
/-1 (5) is a c10sed set, which the proof is complete. 

COROLLARY Let F be a closed sμbset ， U an oþen set, P an 
arbitrary set and x some element 0/ a Qo-grouþ. Then x+F is a 
closed set, μ，hile P+U is an oþen set. 

THEOREM 6 A qo-groμÞ is homogeneous in its interval toþology. 

Hence, from the homogeneity, it fo l1ows that it is sufficient to state and 
verify its local properties for a single element only. 
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