ON A QUASI-ORDERED GROUP

By Tae Ho Choe

Introduction

By a quasi-order on a set is meant a reflexive, transitive binary
relation <. In this paper we shall consider a quasi-ordered group in
the following sense: A group Q is called a quasi-ordered group (=qo-
group), when in Q is defined a quasi-order @¢=b, preserved under the
group operation-+:

a<b implies a+¢c¢<b+c¢ and c+a=<c+bd for all ¢ in Q.

This seems to be a natural generalization of the usual concept of partial
ordered group (=po-group).

Simple examples are provided with the followings

EXAMPLE 1. Let Q be the additive group of all real functions defined
on the unit square 0< %, ¥ <1. And let f>g meant that f(x, ¥»)

> g(x, y) except on a set of measure zero (or except on a non-void
fixed proper subset of the unit square).

EXAMPLE 2. Let Q be the additive group of all (%, #z)-matrices with

real elements. And let (@;:)=(b;.) meant that a;;==b;; for all ¢ (dia-
gonal elements).

This paper is divided into three sections. 8§ 2 is concerned with de-
finitions and the properties of qo-group which are slightly generalized
theorem of po-groups and l-groups. And 8§ 3 deals with completeness of
quasi-ordered set with l.u.b.and g.l.b. of the subset in its interval
topology, which is analogy to Frink's theorem on a lattice. And finally,
we shall prove go-group is homogeneous in its interval topology.

2. Definitions and qo-groups Let Q be a quasi-ordered set under
binary relation <, and A be a subset of Q.
We write, [2]
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M(A)={y€Q: x<y for some x€ A}.
L(A)={ye Q. y<x for some x€ A}.
E(A)=L(AONMCA)

LEMMA 1 1f O is a qo-group, and A is a subgroup (normal
subgroup) of Q, then E(A) is also a subgroup (normal subgroup).

The proof of Lemma 1 is trivial. And we omit the details.
Therefore, E(0) is a normal subgroup of Q, (where 0 is an identity of
Q) which is called the kernel of Q.

E. Schroder has proved that the relation x=3» which means <y and
y<x in a quasi-ordered set is an equivalent relation, and if equivalent

elements are identified, <X becomes a partial ordering. [ 1]

We can easily see that in a qo-group, x, ¥ are equivalent elements
if and only if x—y€ E(0). Hence if all elements of the congruence
class to which O belongs are identified with 0, the quasi-ordering < be-
comes a partial ordering. Thus we can partially order factor gorup @ E
(0) by defining E(a)(=a+E(0))<E(b) if E(a)=+E(b) and a<bd (i. e.
ags E(b)), @ E(0) is then a po-group, and the canonical mapping a—
E(a) is a homomorphism of Q onto @ “E(0) as a groups and a quasi-
ordered sets, Hence we have the following theorem

THEOREM 1 Let Q be a go-group, then the factor group Q E(0)
1S a po-group. And the canomical mapping a—~E(a) is a homomorphism

of & onto Q "E(0).

COROLLARY A qo-group Q is a po-groud if and only if the kernel
of @ be a single subset of zero of Q.

We now extend the theorems of po-groups and l-groups to the case of
quasi-ordering.

THEOREM 2 Let @ be a qo-group with the kernel N, and Q* the
set of all positive elements : a>0, in Q. QF has then foliowing pro-
perities:

(i) x€@Q* and—x¢ Q* if and only if xe N
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(ii) 1f x, ye Q%, then x+ye @+

(iil) For all x€ Q* x4+ Q"' =Q% +x.

Conversely, if a group Q contains a normal subgroup N and a subset
Q+ of O having the properties (i), (i1) and (ii1).We can then introduce
a quasi-order in € so that it becomes a qo-group with the kernel N,

defining x>y if x—y€ QF (or —y+x€Q%). (cf.[1] Theorem 1.
P.214)

PROOF The former part is almost obvious.

We prove the converse. From (i) we get 0€ NCQ%, Thus we have
the reflexive. Again, from (ii) and (iii) we have the transitivity and
a<b implies a+c<b+c¢ and c+a<c+b. Finally, we have to note that
the normal subgsoup N is the kernel of Q : For, x&é N, we get x€ Q*,
—x¢€ Q* from (i). Thus x€ E(o) of Q. Conversely, x€ E(o) implies
xe Qt, —xe @, Thus, by (i) x€ N.

L.E.Ward (2] has defined that the concept of g.1.b. and 1.u.b.
of a quasi-ordered set, which seems to be a suitable generalization of
the usual concept of complete lattice, as following :

Let ¥ be an element of quasi-ordered set X is minimal (maximal),
whenever x<y (¥<x) in X implies y<x (x<y). And let A be a subset
of quasi-ordered set X, The element x& X is an upper (lower) bound
for A provided a<x (x<a) for all ae€ A. The element x is a least upper
(greatest lower) bournd for A if x is a minimal (maximal) element of
the set of upper (lower) bounds of A, dnote by VA (AA). The quasi
ordered set is \/ A\ quasi-odered (\/ N\complete auasi-ordered) if it has
both a g.l.b. and a l.u.b. of any two elements (of any subset).
We denote by \/ Aqos (\V Acgos). We have to note that the operations
AA, VA are not always unique operations in this case,.

LEMMA 2 Let Q be a N\ N\ao-group with the kernel N, Then the
relation x=y which means x—yeN i1s a congruence relation . x=a

and y=b implies x\/y=a\/b and xN\y=a/b.

PROOF x=a and y=b imply x—a, y—be E(0)(=N), Thus agz,
x<a, y=band bxy. And we have L(x)=L(a) and L(y)=L(b).
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Therefore, L(x) NL(y)=L(a) NL(b). Since x\/y is a maximal element
of L(x) NL(y) and a\/b is also a maximal element of L(a) NL(b),
we have x/Ay=aA\b. And dually.

LEMMA 3 A qo-group Q with the kernel N is a \//\qo-group if
and only if for all ae Q, all xé N, a\/x exists

PROOF If Q is an A\ qo-group, then obviously a\/x exists for all

a€ (), all x¢e N. Conversely, let a, b€ Q. By the hypothesis, there
exists the element z=0o\/(b—a) in Q. And we have z+a=a\/b.

In fact, z=0\/(b—a) implies that z+a is an upper bound of @, b. If
we M(a) N\M(b), then we see easily that w—ae€ M(o) NM(b—a). If
w<z+a for some we M(a) \M(b), since z is a mimimal element of
M(o) NM(b—a) we have z +a<<w. Thus the element 2z+ ¢ 1S a minimal
element of M(a)NM(d). On the other hand we see that —(—aV —b)
=a/\b. The proof is complete.

Hence we have the following theorem

THEOREM 38 Let Q be a qo-group with the keymel N, and if for
all a€©Q, all x&€ N a\lx exists. Then the factor group QN 13 an
[-groud.

COROLLARY 1In any A\ qo-group with the kernel N, we have the
following statements [1]

(i) a—(CaA\b)+b=b\/a (i) a+b=Ca\/b)+(al\b)

(151 2\ BV I=(aAIV (aAe)

(iv) a\b, a/\ce N wmplies a\(b+c)e N and dual.

3 Interval topology in a quasi-ordered set
[..E.Ward [ 2] has also suggested that it is possible to introdeuce an
interval topology for quasi-ordered sets. It is that topology which has for

a subbase for closed sets all sets of the form L(x) or M(x), where
x i1s a member of the quasi-ordered set. |

We now extend the result of Frink to the case of A \/qo-set.
Let the closed interval (@, 6] be set of all elements ¥ with ¢<x<5b.
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Then, if ea=x, b=y we have [a, bl=[%, ¥l

THEOREM. 4 An ANVaos Q is a N\ cgos if and only if Q is
compact in iis interval topology. '

PROOF The necessity is easily given by the same manner of Frink,
Conversely, let S be a non-null subset of Q. By the hypothesis and ([[2]
Theorem 1), Q has a minimal element, And each L(x) being compact,
N{L(x) :x€ S} is non-null compact set. Therefore, N{L(x) :x€ S} has
a maximal element, which is a g.1.b. of S. And dually.

LEMMA 4 ILet Q be a qo-set and a€ Q. Then E(a) is the closure
of single set {a} i.e. E(a)=a in ils interval topology.

PROOF Let C be a closed set including {e}. We assert that £(a)CC.
For, if a€ L(x) (M(x)), then E(a)CL(x) (M(x)) by the transitivity
of the qo-set. Since E(a)=M(a)NL(a), E(a) is aclosed set including
{a}. Hence we have E(a)=a.

Therefore, we have proved

THEOREM b5 A go-sed @ is Ti-space in its interval topology 1if
and only tf Q is a poset.

COROLLARY A qo-group s Ti-space in its tnterval topology if
and only if the kernel of the qo-group is the single set of zero of
the qo-group.

E.S. Northam [4] has proved that an l-group need not always be a
topological group. Therefore, it is also true that qo-group is not always
a topological group. Finally, we investigate the homogeneity of go-group
in its interval topology. (€ is homogeneous if for any two elements ?

and ¢ of ¢, there exists a topological transformation of ¢ into itself
which transform p into ¢)

LEMMA 5 Let Q be a qo-group. Suppose the mapping f: x—~a+x,
wheve a 1s a fixed element of Q. Then fis a topological maphing of
the space € wnto itself in ils interval topology.

PROOF 1t is obvious that f is one-to-one. Furthermore, f is contin-
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uous, For, if S be a closed subset of Q, then S is the finite union of

the intersection of arbitrary number of closed intervals L(x), M(x),
(xe Q). We see easily that

a+L(x)=L{a+x), a+M(x)=M(a+x) for all a, x€ Q.
Hence f~' (S)=-a+S 1is also the finite union of the intersection of

arbitrary number of closed intervals L(—a+x), M(—a+x). Thus
=t (S) is a closed set, which the proof is complete,

COROLLARY Let F be a closed subset, U an open set, P an

arbitrary set and x some element of a qo-group. Then x+F is a
closed set, while P+U is an open set.

THEOREM 6 A go-group is homogeneous in its interval topology.

Hence, from the homogeneity, it follows that it is sufficient to state and
verify its local properties for a single element only.
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