ON THE PARAMETER GROUP MANIFOLDS

By Jae Koo Ahn

Introduction,

In 19563 Harley Flanders [ 1] introduced the extended exterior differen-
tiation on the differentiable manifold, The purpose of this paper is to
study on the parameter group manifold, given some connections by N,
Horie,[2] in the sense of the operation. In section 1, we shall define a
linear space at any point of the group manifold and, from this, intro-

duce the operation. In section 2 and 3, we shall introduce the connect-
1ons, investigate the characteristic properties of their manifolds and com-
pute some identities.

1. Basic definitions,

We consider the first parameter group ‘¥ and the second parameter

group Z‘~of continuous transformation group & of dimension 7, whose
equations may be represented by

ag =g)ct(a” az)-: (lﬂ":], % 9’.)!

where a's are ¢ essential parameter under the equations of the continuous
fransformation group &, taking x's as # independent wvariables,

2 =f’(x, a), C?::L T}

Let pas
‘ E ~ =Af(633_)Ajg (a:'-’.) *).r
816-_’;
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be the fundamental equations of Zand ¢’ respectively, where the
determinant |A;| is not zero and ||A%]| is the inverse one of ||Af][,
and A;, A are the ones of ¢#¢~’ corresponding to Ay, A% of ¢ res-

(%) We agree to sum over the possible values of the indices with respect to each
index which uppears twice,
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pectively. And we can consider the group manifolds Z¥, ¢Z¢’ as the
differentiable manifolds, and assume that their classes are all C”.

Let Ay (¢=1,---, 7) denote the pairs (AL, A%, -+, A%), then, since
|A% | is not zero, A,,---, A, form a basis of a vector space ¢z, (P € )
i, e., o,=E{A|A=C% A4}, where, C* are constants, We call o, the
fundamental 1-vector space at P. Let the dual space of ¢z, denotes by
Z,, and the dual basis of 4,, <+, A, inoz, by D*, -+, D", then ,=E{D|
D=C.D*! forms a linear space of dimension », called it fundantenial
1-form space at P, where C, are constants.

If A is any 1-vector at P, then A=C%"A,, with constants C*, A
mapping ¢ which maps each point P€ Z*’ into a fundamental 1-vector
$(P) in o¢, is called a fundamential 1-vector field provided that in each
local coordinate neighborhood with coordinate system (a', s+, a")
¢(P) is expressed by

¢'(P)=Ca<al: " CI,,)Ag(d_),

where C* (a) are functions of classC». In similar manner we define a

fundamental 1-form field. When there is no danger of confusion, we
shall refer to such an 1-vector field and an 1-form field simply as an

1-vector and an I1-form respectively.

Let R=R (%) denote the ring of all C~ functions on ¢, And over the
vector space ¢¢, at P€ Z(*), we may form the space N &, of p-vectors
at P and the space N\? &, of g-forms at P, and in the same manner,
we may define the p-vecfor field and g-form jfield. Furthermore, If
the ring R acts both, then we have the linear spaces ¢z’ and 2, corres-
ponding to N’ ¢z, and N\? Z,, where P represents each point in &‘*’,
respectively, Now, we consider the tensor products

T =2, o’

At any rate, we act the ring R as a coefficient ring also, thus 7%} forms
a linear space, And, setting x=SP o’, o =>PZ,, then each of these
1S an algebra over R, where multiplication is the Grassmann product,

1, e., passing to homogeneous components, the operation on 2°/x 2% to

7 4tqt given by linearity and
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(DAY D' A")=(DD')(AA'), Dez, D'ez,), Acot’, A e,

This operation is associative and distributive, and on commutation it
obeys the following:

MN=(—1)?"*1"NM, Me 275, Ne7.

Next, we refer the definition of extended exterior differentiation.
It is an operation d on each space 2} to 2}, satisfying the followings:
(1)) d(M+N)=dM~+dN, M, Neg!.
(2) d(MN)=dMN+(—1)* MdN, Mec9?, Neg"
(3) d coincides with the affine connectiorn on 27!, and d coincides
weth the exterior differentiation on °;=2,.

The existence and uniqueness of this operation is proved by Harley
Flanders,

2. Curvature and torsion of ¥,

From the above section, we have seen that A, -°-, A, form a basis
of the fundamental 1-vector space at a point Pe . By the definition
of vector field, we may regard that A, (P), ---, A,(P) are vector fields
called the fundamental frame. If A, ---, A, is the frame with dual
basis of forms D', --., D" using of matrix notation, we shall set

A,
(2_1) A:( : ) ; D'_‘:(Dl, coo, .l):'-.).lP
A,
and it is convenient to us that a (1,1) matrix is single element,
We set
(2.2) AdP=D'A,+ ++++ +D’A,=DA,

and we call it the displacement vector of F*’ ane #¢°? which we define
in secion 3, and thus dPe€ 2*;. Henceforth we assume that Z®? is g2

manifold with an affine connection d. Moreover, the extended exterior
differentiation d may be acted on the displacement vector dP, and we
call d’P=d(dP)e 7} {torsion vecior of ¥,

Since each Ax€ 2%, we have dAqs€ ¥} and thus there are unique 1-
forms w§ such that dA«=w& Az, i. e., in matrix form,
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(2. 3) dA=0A, where Q= ||w§ ||.
b
Taking w§ so that w§ =Lg.D'=A7 aa‘if D, where L%.¢ R, then we
have dA,=Af P22 DA, Since dAy=(dAk, -, ddy ), Ak €R, it
follows that dAg =- 2‘23 D*, and thus we have
— aA.cf T
(2. 4) dAy= s D~

This is converse, and hence we may regard that (2. 3) and (2. 4)
are equivalent. Furthermore, if we put D =da", then we have dA«

= Z;lf da®, and thus, in this case, we may regard that this operation

d 1s ordinary differentiation. We call the 1-forms w8 the (+)-con-
nection forms.

If we now differentiate (2. 2) we obtain
d’P=dDA—-DdA=(dD—-DQ)A.

Let us put T=dD—D, then we have
(2. 5) d’P=TA, T=dD-DQ.

Thus T is (1, n) matrix of 2-forms which we shall call the forsion form.
In this section, we assume that D*=da*. Then, since dD=d(da)=0,

we have
d*P=—DQA=—da* wiA,=—da* (LEda" )A,

=—%(La3f—l,r’3a) da®*da*A,.
Since LS. —LE,x=C¢ A2 B A?Z, it reduces to

dZP-_—-'_"“%“CaEb Al AL A2 da®datA,.

(2. 6) d°’P=-—-T25da’da A,,

(2. ) Tg=-5CiAs Ay AT,
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and thus the coefficients of torsion forms are represented by
1 e e b 0 4
?Cab Ag A"f Ag .

If we differentiate the second of (2. 5), we have
(2. 8) dI'+TQ=D8, 0=d4dQ—?.

The (n, n)matrix @ of 2-forms §§ iscalled the curvature matrix and its
elements are the curvature forms of <, If we now compute the curva-
ture form %, then we have

8 =dw? —w? ws =— LA, da" da*,

2
where
o 7 T
LB:IML— 3a™ LHBF' _“a a* Ldﬁh +Lr_m fgh_LarA LrB;.:-r
and thus, since LB4,.=0, we have 5=0, 1. e., @ is zero matrix,
Hence, (2. 8) are reduced to
(2, 9) de__TQj dQ—:Qz.
Writting the first of (2. 9) by the element form, it is d7T%=—T"w¥%.
Let us compute this equation. Substituting 7T*=T9%.da" da” and

wi=1L%,da’ into it, then we have

(<2 Th+ L% T JdaPda’das =0,

aa‘’

pAn y 0AF
6 = AL 04

4 -, then it reduce to
Da oa

Using of (2. 6) and L%, =A%

(C:,Cf. +C5,CL, +C¢,ClL, ) AT A Ay A% da’daPda” =0.

Since the part of bracket is zero identically and this computation is con-
versible, we can see that the first of (2. 9) is satisfied identically.

We can compute the following identities:

(2.10) dO*=0,  dO**'=0%**, (k=0)
(2.11) dsP =0,

il e———

(*) K(apfvr) denotes the sum of cyclic parts for indices ¢, 8 and 7.
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(2. 12) d=A=O’
(2.13) d*T =0,

For, (2.10) holds by induction, (2.11) from d:P=d(d*P)
=d( —daQA)=da(dQA—QdA)=0 by virtue of (2.10), (2.12) from
d*A=d(dA)=d(QA)=0 by (2.10), (2.13) from d*T=d(dT)
=d(—TQ)=—dTQ-TdQ=TQ*—-T*=0,

3. Curvature and torsion of 79

Let us set the connection forms w2 on (2. 3) so that

‘ 1 2 A 2 A
<3. 1) w§= c:BrDr: where Fagr_" 9 Af (‘aa:""l" aac: )

We denote this group manifold with connections (3. 1) by &%’ and call
this form (0)-connection. In ¢, if we take D as da®, since it holds

(2. 3), we have

aa’ oa”

2dAa=Af( Ay + 2 A< )D*—‘Am

and consequently,

a 7 a a
A{E‘ da* + A; -da’
oa 0

2d Ay =

Exterior multiplying it by da* and summing for «, then we obtain
da* d A« =0,
and thus,
(3. 2) do dA=0,
Hence, from (2. 3) and (3. 2), on & we may hold
(3. 3) da QA=0,
Extended exterior differentiating (2. 2) and using of (3. 3), we have
d* P=0
and hence, the ¥ the torsion forms T are vanish.

Since the curvature matrix @ are represented by the second of (2. 8),
we may see that the curvature forms 62 are computable to

1

2 ‘FBahp dﬂh dap;

where
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D . )
Fﬂdhﬂ_'“aah Fcrgp' “aap'raﬂh""l ar# 'I:‘Bh_rdrh rrnm
and consequently, since [Parp = i Ci. Ciy A2 A% A; AL, the curvature
forms are given by
(3. 4) pa=-7 Ci. C% A Al A AL da dav,

From (3. 3), we can compute the following identities satisfying on
7408 |

(3. 5) da " A=0, (r=1),

(3. 6) da QO"A=0, (r=0).

For, these are provable from (3. 3) by induction, using of (2. 8)
and the Bianchi identity:

(3. 7) de"'=00"—-0'Q2, (r=1).

Oct, 1959
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Kyungpook University
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