
ON THE PARAMETER GROUP MANIFOLDS 

By Jae Koo Ahn 

Introduction. 

10 1953 Har1ey Flanders [1] introduced the extended exterior differen­

tiation On the differentiable manifold. The purposc of this paper is to 

study On the parameter group manifold, given ∞me connections by N. 
표orie ， [2] io 앙le sense of the operation. ln section 1 , we shall define a 

liuear space at any point of the group manifold and, from this, intro­

dllce the operation. In section 2 and 3, we shall introduce the connect­

ions, investigate the characteristic properties of their manifolds and com­

pute some identities. 

1. Basic definitions. 

We consider the first parameter group ~(+) and the second parameter 

group α(-)of continuous transformation group ~ of dimension r , whose 

equations may be represented by 

a~ =pct(a" a2 ) , (α=1 ， ••• , ,-), 

whe:re a’s are resse!ltial parameter under LlIe equations ,of thecontinuous 

transfonnation grou맹 ~~ taking x’s .as n independent variables, 

x’ i=/’(x, a) , (i =1 , … , n). 

효훌一 =Ar(as)A，~ (a~) .). 
f!)，a잉 

Let 

경짧， =.Ã않)Ã~ (a 1 ) 

be the fundamental equations of t1'''+)and ry•) respectively, where the 

determinant )Afl is not zero and 11 A잉I is the inverse One of JI Af 1/ , 
and 껴f ， Ã~ are the Ones of t1'c-) corresponding to A~ ， A~ of o/c+) res-
• 

(*J We agree to sum over the possible values of the indic.es with respect .to each 
index which uppears twice. 
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pectively. And we can consider the group manifolds αC+) ， ~C-) as the 

differentiable manifolds, and assume that their classes are all C∞ • 

Let A <1 (α = 1 , - - 。 , 서 denotethe pairs (A~， A~， "', A ::x), then, since 
IA~ I is not zero, A t," <, A , form a basis of a vector space αp(P ε çp+) ) 

i. e. , αp=E{AI A=C <1A심， where, C <1 are constants. We call αp the 

fundamental 1-νector space at P. Let the dual space of αp denotes by 

.!Øp, and the dua1 basis of Al' …, Ar in αp by D 1, .. " Dr, then .!Ø p=E {D I 
D=C<1D벽 forms a linear space of dimension r , called it fundamerztal 

1-form space at p , where Cπ are constants. 

If A is any 1-vector at P , then A = CαA <1' with constants C <1 • A 

mapping ψ which maps each point P E αC+l into a fundamental 1-vector 

예P) in otp is called a jundamental 1-vectoγ field provided that in each 

loca1 coordinate neighborhood with coordinate system 

1;( P) is expressed by 

1;(P)=C<1( ιh "', a n )A<1( a) , 

,at, …, a') 

where Cα (a) are functions of c1assC". 1n simi1ar manner we define a 

fμndamental l-form field. When there is nO danger of confl1sion, we 
shall refer to such an 1-vector field and an l-form field simply as an 

1-vector and an l-form respectively. 

Let R=R (f7) denote the ring of all C∞ functions On 0/. And over the 

vector space αp at PE ~(+)， we may form the space 깨 q; p of p-vectors 

at P and the space N .!Ø p of q- forms at p , and in the same mar1l1er, 
we may define the p-vector field and q-form jield. Furthermore, 1f 

the ring R acts both, then we have the linear spaces αp and g; q corres­

ponding to 애 Otp and N .!Øp , where P represents each point in 0/(+), 

respectively. Now, we consider the tensor products 

a‘: '.!Øq @ αP. 

At any rate, we act the ring R as a coefficient ring also, thus ~얘 forms 

a linear space. And, setting α=2;밍 αP， .:ø = 2:띤j.:ø q' then each of these 

is an a1gebra over R , where mu1tiplication is the Grassmann product. 

i. e. , passing to homogeneous components, the operation On r: x r:; to 

쩍원: given by linearity and 

t 
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(DA)(D’A ’)=(DD’ )(AA’), DE .2fq l D! E .2fq’ ， A ε otP ， A ’ eαP’. 

This operation is associative and distributive, and On commutation it 

obeys the fol1owing: 

MN=( l )PP’+qq’NM, Mε rg , NE r~:. 

Next, we refer the delinition 01 extended exte1ψr dz"j/erentia tt'on. 

It is an operation d on each space r: to ?J걱"'1 satisfying the fol1owings: 

(1) d (M+N)=dM+dN , M, N ε a얘. 

(2) d (MN)=dMN +( -ly MdN , Mε 2‘~， NE r~ 

(3) d coincides ωith the a/ /ine connection on ?J개， and d coincides 
μ，ith the exte1’ior d i 1 1 erenti ation on r: =.2f q. 

The existence and uniqueness of this operation is proved by Harley 
Flanders 

2. Curvature and torsion of çp+). 

From 삼le above section, we have seen that A" ‘. " A , form a basis 

of the fundamental 1-vector space at a point P ε 0/(+). By the definition 

of vector field , we may regard that A , (P), "', A.(P) are vector fields 

called the /μndamental Ira-rne. If AJ, "', Ar is the frame with dual 

basis of forms D ’, "', D" using of matrix notation, we shal1 set 

A J 

(2.1) A=I , D=(DI, … , D') , 
A , 

and it is convenient to us that a (1, 1) matrix is single element. 

We set 

(2.2) dP三DIAI + ------ +DrAr=DA, 
and we cal1 it the disPI acement vectoγ 0/ α(+) ane α(0) which we define 

in secion 3, and thus dPE ?J난. Henceforth we assume that 0/('+) is a 

manifold with an affine connection d. Moreover, the extended exterior 

differentiation d may be acted On the displacement vector dP, and we 

C삶1 d 2P=d(dP) ε g각 torsion vector 01 0/(+). 

Since each Aa ε aη ， we have dAa ξ If"\ and thus there are unique 1-

forIns ω~ such that dAcx =ωg A p , i. e. , in matrix fo''''nmn , 

• 



, 

42 1ae Koo Ahn 

(2. 3) dA= .oA , where .0= 11 (V~ 11. 

Taking ω~ so th따 뼈 =LgrDr=Ag 현욕Dr ， where Lgr ξ R , then we 
ôa 

have dA o- =Af 쩍휴D~Aß. Since dAcx=(dA~， ... , dA~)， A~ ε R , it 
- δ a" - ‘ 

ôA~ nr follows that d A응 = .. ~~~~~~~~τ D r , and thus we have 
- ôa 

(2. 4) 펼
%
 

M 
M 

This is converse, and hence we may regard that \2. 3) and (2. 4) 

are eqziνalent. Furthermore, if we put Dr=daT!, then we have dAcx 

=경흙 d ar, and thus, in this case, we may regard that this 0φeration 
d is 0γd쩌aγy differentiation. We call the l-forms ωg the (+ )-con­

nectio1Z forms. 

If we nOw differentiate (2. 2) we obtain 

d 2P=dDA DdA=(dD D.o )A. 

Let us put T=dD D.o, then we have 

(2. 5) d 2P=TA , T=dD D.o. 
Thus T is (1 , n) matrix of :l-forms which we shall call the torsion form. 

1n this section, we assume that Dα =daα. Then, since dD=d(da)=O, 
we have 

d 2P= DοA= daCf wgAß=-dαcf (L봐dar)A {3 

-쉰L와-LfCf) da Cfda rA {3 

Since Lg r - L~Cf = C!b A~ B~ A ~， it reduces to 

d2P=_융℃때~ A~ A~ da Cf d a r A {3 

If we put 

(2 6) 

we have 

d 2P= -T /h daßdaη4 Cf , 

(2. 7) T 1"/ = 융C찌a A; A? , 



On the þarmneter gr(Juþ manifolds 43 

and thus the coefficients of torsion forms are represented by 

웅C~b Aå A~ A~ . 

If we differentiate the second of (2. 5) , we have 

(2. 8) dT+T [2 =Ð8 , 8=d [2 .[22. 

The (n, n)matrix (8) of 2-forms eg is called the cμγvature matrix and its 

elements are the curvature lorms 01 I'!<+). If we now compute the curva­

ture form ef1, then. we have 

eg.-dωg -ωg ωS =웅Lß CC ,^-p. d a'̂ - d aP., 

where 
g 

Lß CI. '^-μ=--fL좌 .τLi'^- +L싸 L융-L짜 L끊， ôa" -. ôa 

and thus, since L f1 cc '^-μ =0, we have eg=o, i. e. , (8) is zero matrix. 

lIence, (2. 8) are reduced to 

(2, 9) dT= Tα， d[2_[2 2 

Writting the first of (2. 9) by the element form , it is dTcc = T"ωg. 

Let us compute this equation. Substituting Tcc =T없da
ß da '1 and 

ωg = Lgσdaσ into it, then we have 

}a- Td +L g T r 
ôa<σ B’ ) T L.J,(<T ..f. ß '1) 

da f1da’da『 =O (%) 

Using of (2 6) 1~ Ab ôA~ and L염 ，， =A~ ô i:l.q = - A~U.fi~ ., then it reduce to 
“ . - ôa' - ôa 

(C~fC{c +C~fC{a +C~f Ctb) A~ A응 A~ A~ da~daf1daγ =0. 

Since the part of bracket is zero identically and this computation is con­

versible, we can see that the first of (2. 9) is satisfied identically. 

We can compute the lollow쩌g identities: 

(2.10) 

(2.11) 

d [22k=0, 
dSP=O , 

d[2~I+ ’ =.Qû +2, (k늘0) 

C*) K(o:fI"1) denotes the sum of cyclic parts for indices α. ß and "1. 
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(2.12) 

(2.13) 

d~A-O， 

d~T=O， 

For, (2.10) holds by induction, (2.11) from d 3P=d(d!P) 

=d( -daf2A)=da(dQA一 f2dA)=O by virtue of (2.10), (2.12) from 

d 2 A=d(dA)=d(!2A)=0 by (2.10) , (2.13) from d"T=d(dT) 

=d( -T!2)= -dT!2 -Td!2 =T!2"-T!2"=O. 

3. Curvature and torsion of ry(O). 

Let us set the cOnnection forms ω~ on (2. 3) so that 

(8. 1) (J)g =않 D r , where 않=÷Ae + 짧
 표
 

ôA~ 
ô act. 

• 

We denote this group manifold with connections (8. 1) by 0/(0) and call 
this form (0 )-connection. In ry씨， if we take Dr as da r , since it holds 

(2. 3), we have 

2dAct. =A~ aAa + 
ôa ‘ 

aA~ 
ôact. 

. )Dr A ß , 

and consequently, 

2dA:'. = 캘흐 da r + 
- i'!a' 

P욕웅_dar 
ôa~ 

Exterior multiplying it by d act. and summing for α， then we obtain 

d act. d A ct. = 0, 
and thus, 

(3. 2) 

Hence, from (2. 

(3. :)) 

dadA=O. 

3) and (3. 2), on ry(O) we may hold 

da DA=O. 

Extended exterior differentiating (2. 2) and using of (3. 3), we have 

d 2 P=0 

and hence , the 0/ (0) the torsion forms T are vanish. 
Since the curvature matrix 8 are represented by the second of (2. 8), 

we may see that the curvature forms eg are cornputable to 

짧 = 윷rßct." μ daλ da'" , 

where 
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rP,u p.= _뜨 「와 - 3τ .. r져 +L짜「 끊 - r .xT:" r뭘， , .. r- ôal‘ ôa' 、

and consequent1y, since 얹Kμ=갚 Cc C~b쩨 the curvature 

forms are given by 

(3. 4) eg=갚C~c C~b때 

From 3), we Cl‘n comþute the following identities satisfying 
0/ (0) • 

(3. 

(3. 

For, 

5) 

6) 

these 

da 

da 

are 

(8)' A=o, 
Dθr A=O, 

(1'늘1) ， 

(1'늘0) 

from (:3. :3) by induction, usmg 

and the 

provable 

Bianchi identity: 

(3. 7) d r.w =DS' 8'‘Q, (1늘1). 

Oct. 1959 
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