AN APPROXIMAION TO THE SECOND BOUNDARY VALUE PROBLEM

By Kapbyung Yoon

1. Introduction

Beno Eckmann gave physical interpretations grad and div to the cohomology and homology operators δ and ϑ . He gave another proof of the existence and the uniqueness of electric current on a network with given resistances and electromotoric forces by homology theoretical method, although the original proof was given by H. Weyl by different method. Eckmann also treated the 1-st boundary value problem, [1]. The purpose of this paper is to give a formulation of the 2-nd boundary value problem in discrete case.

The well known 2-nd boundary value problem in classic analysis states as follow:

Let D_1 be a bounded domain with sufficiently smooth boundary B_1 in an Euclidean space. A function g(b), $b \in B_1$, is given on B_1 . To find a harmonic function f(d), $d \in D_1$, which satisfies

 $A f J = a - a f = 0 \quad a = D$

whose normal derivative
$$\frac{\partial f}{\partial n} = g$$
 on B_1 .

This problem is solvable if and only if

$$\int_{B_1} g ds = 0$$

and the solution f is unique except adding an arbitrary constant.

2. Notations

Let an arbitrary 1-dimensional complex constructed in D_1 be K_1^* , and we call the set of vertices, 0-dimensional simplices, of K^* . $I = \{i \mid i = a \text{ vertex of } K^*\} = \text{the set of inner points, the set of edges,}$ 1-dimensional simplices, of K^* .

. . .

34 Kapbyung Yoon

D =the set of domainal edges.

From several vertices which are close to the boundary B_1 , we draw segments $C = \{c\}$ vertically to B_1 , and denote the set of the other ends of c, $B = \{b\}$. C = the set of connecting edges,

B =the set of boundary points.

We construct a complex K from the edges of C, D and the vertices of

I, B. Then K^* is a subcomplex of K. Note the following two properties:

i) Every vertex of any edge in D belongs to I.

ii) Every simple closed path of K consists of the edges of D.

These two properties can be expressed as

 $\mathscr{J}_{\iota} \subset V_{\scriptscriptstyle D}, \ \partial V_{\scriptscriptstyle D} \subset V_{\scriptscriptstyle I}$

(For the notations, see the following definitions.) In order to generalize this problem, we simply give the following definitions.
Complex K.....a finite simplicial complex whose dimension is n.
\$\mathcal{L}^p(K)\$the p-dimensional chain group of K with real coefficients.
This is an n-dimensional vector space. A chain is denoted by C^p.
The inner product of two chains C^p and C^p_1If

$$C^{p} = \sum g_{i}\sigma_{i}, C^{p}_{1} = \sum g'_{i}\sigma_{i}$$

(σ_i are the *p*-dimensional simplices of K), then the inner product $C^p \cdot C_1^p$ is defined by $\sum g_i g'_i$.

 ∂ , δthe usual boundary and coboundary operations in K.

 \mathscr{P}_{p} , Z^{p}the groups of all cycles and cocycles, respectively. These are linear subspaces of the vector space \mathscr{L}^{p} .

Condition (E_p) $\mathscr{J}_{p+1} \subset V_D$, $\partial V_D \subset V_I$. $K^* \cdots (p+1)$ -dimensional complex made of the simplices of D, I and their faces.

An approximation to the second boundary

35

3. The 2-nd boundary value problem

Let g(c) be a given function defined on C, i.e. g is a vector of V_c . To find a *p*-dimensional chain (vector) f such that

$$\begin{cases} \delta f = g & \text{on } C \\ \partial \delta f = 0 & \text{on } I. \end{cases}$$

THE MAIN THEOREM. The above problem is solvable if and only if $Z^{p}(K^{*}) \cdot \partial g = 0$, and the solution is unique modulo cocycles, provided that the conditicon (E_{p}) holds.

PROOF. Let us suppose that there exists at least one solution. Then

> $\delta f = g + g_D$ for some $g_D \in V_D$ $\partial \delta f = \partial g + \partial g_{\rm p}, \quad \partial g = \partial \delta f - \partial g_{\rm p}$

Now,

$$Z^{p}(K^{*}) \cdot \partial \delta f \subset Z^{p}(K^{*}) \cdot V_{B}$$

$$\subset \mathcal{L}^{p}(K^{*}) \cdot V_{B} = V_{I} \cdot V_{B} = 0$$

$$Z^{p}(K^{*}) \cdot \partial g_{D} = Z^{p}(K^{*}) \cdot \partial_{*} g_{D} = \delta_{*}Z^{p}(K^{*}) \cdot g_{D}$$

$$= 0 \cdot g_{D} = 0,$$

where ∂_* and δ_* are the boundary and coboundary operations of K^* . Hence

$$\partial g \cdot Z^{\flat} (K^*) = 0$$

Conversiv let us suppose that the above relation holds.

$$\mathcal{L}^{p} = V_{I} + V_{B} = \mathcal{L}^{p}(\mathbf{K}^{*}) + V_{B} = Z^{p}(\mathbf{K}^{*}) + \mathcal{R}_{p}(\mathbf{K}^{*}) + V_{B}.$$

Therefore

$$\partial g \in R_p(K^*) + V_B.$$

So we can find $g_D \in V_D$, $f_B \in V_B$ such that
 $\partial g = \partial g_D + f_B$
Now let \mathcal{P}_{p+1} be the orthogonal projection of $g - g_D$ on \mathcal{P}_{p+1} ,
that is

$$(g-g_D-\mathcal{Y}_{p+1}) \cdot \mathcal{Y}_{p+1}=0, \ \mathcal{Y}_{p+1} \in \mathcal{Y}_{p+1},$$

then

$$g - g_D - \mathcal{Y}_{p+1} \in P^{p+1}$$

and there exists an f such that

36

Kapbyung Yoon

Because
$$\begin{split} \delta f = g - g_D - \mathcal{Y}_{p+1}.\\ \mathcal{F}_{p+1} \in \mathcal{F}_{p+1} \subset V_D,\\ \delta f = g \quad \text{on } C.\\ \text{And} \quad \partial \delta f = \partial g - \partial g_D - \partial \mathcal{Y}_{p+1} = \partial g - \partial g_D = f_B\\ \partial \delta f = 0 \quad \text{on } I. \end{split}$$

Finally, we will prove the uniqueness. Let f_1 be another solution of the

(1)

(2)

-

problem,

$$\delta f = \delta f_1 = g \quad \text{on } C,$$

$$\partial \delta f = \partial \delta f_1 = 0 \quad \text{on } I.$$

Then

$$\begin{split} &\delta(f-f_1)=0 \quad \text{on } C, \text{ and} \\ &h=\delta(f-f_1)\in V_D \\ & \partial h=0 \quad \text{on } I, \text{ so } \partial h\in V_B \\ &\text{But from (1),} \quad \partial h\in \partial V_D\subset V_I. \\ &\text{This, together with (2) yields } \partial h=0, \\ &\text{that is} \qquad h\in \mathcal{P}_{p+1} \\ &\text{But} \qquad h=\delta(f-f_1)\in P^{p+1}, \text{ so} \\ &h\in \mathcal{P}_{p+1} \cap P^{p+1}=0. \end{split}$$

4. Case p=0

The condition $Z^{\flat}(K^*) \cdot \partial g = 0$ becomes $Z^{\flat}(K^*) \cdot \partial g = 0$ Let K_i^* (i=1, 2, ..., l) be the components of K^* . If ζ_i^{\flat} is the fundamental cocycle of K_i^* , then the condition is expressed as

 $\zeta_i^{\circ} \circ \partial g = 0$ for all *i*.

This means that the sum of the values of g on those edges issuing from K^{*} is 0 for all *i*. This is a similar result to

 $\int_{B_1} g ds = 0$ for the continuous case.

1-dimensional complex satisfying (E_i) can be obtained as follows. Let K^* be an arbitrary 1-dimensional finite simplicial complex whose components we denote by K_i^* (i=1, 2, ..., l). The edges and vertices

An approximation to the second boundary 37

of K^* are the simplices of D and I. We enlarge K^{*}_{i} by putting arbitrary trees on its vertices, obtaining enlarged components K^{**}_{i} , we can connect arbitrary components K^{**}_{i} to other components K^{**}_{j} by trees. But if K^{**}_{i} is connected to K^{**}_{j} , and K^{**}_{j} is connected to K^{**}_{i} , then connecting K^{**}_{i} to K^{**}_{i} is forbidden.

Finally we can augment thus obtained complex by adding arbitrary

separate trees which shall make components by themselves in the finally obtained complex K. The edges and vertices of K which do not belong to K^* are the vertices of C and B.

October, 1959 Mathematical Department Liberal Arts and Science College Seoul National Uiniversity

REFERENCE

[1] Beno Eckmann, Harmonische Funktionen und Randwertaufgaben in einem Komplex, Commentarii Mathematici Helvetici, Vol. 17, 1944. pp, 240-255.