AN APPROXIMAION TO THE SECOND BOUNDARY VALUE PROBLEM

By Kapbyung Yoon

1. Introduction

Beno Eckmann gave physical interpretations grad and div to the cohomology and homology operators δ and ∂. He gave another proof of the existence and the uniqueness of electric current on a network with given resistances and electromotoric forces by homology theoretical method, although the original proof was given by H. Weyl by different method. Eckmann also treated the 1 -st boundary value problem, [1].

The purpose of this paper is to give a formulation of the 2 -nd boundary value problem in discrete case.

The well known 2-nd boundary value problem in classic analysis states as follow:

Let D_{1} be a bounded domain with sufficiently smooth boundary B_{1} in an Euclidean space. A function $g(b), b \in B_{1}$, is given on B_{1}. To find a harmonic function $f(d), d \in D_{1}$, which satisfies

$$
\Delta f=d i v \cdot g v a d f=0 \quad \text { on } D_{1},
$$

whose normal derivative $\frac{\partial f}{\partial n}=g$ on B_{1}.
This problem is solvable if and only if

$$
\int_{B_{l}} g d s=0
$$

and the solution f is unique except adding an arbitrary constant.

2. Notations

Let an arbitrary 1-dimensional complex constructed in D_{1} be K_{1}^{*}, and we call the set of vertices, 0 -dimensional simplices, of K^{*}.
$I=\left\{i \mid i=a\right.$ vertex of $\left.K^{*}\right\}=$ the set of inner points, the set of edges, 1-dimensional simplices, of K^{*}.
$D=$ the set of domainal edges.
From several vertices which are close to the boundary B_{1}, we draw segments $C=\{c\}$ vertically to B_{1}, and denote the set of the other ends of $c, B=\{b\}$.
$C=$ the set of connecting edges,
$B=$ the set of boundary points.
We construct a complex K from the edges of C, D and the vertices of I, B. Then K^{*} is a subcomplex of K. Note the following two properties:
i) Every vertex of any edge in D belongs to l.
ii) Every simple closed path of K consists of the edges of D.

These two properties can be expressed as

$$
\mathcal{F}_{1} \subset V_{D}, \quad \partial V_{D} \subset V_{I}
$$

(For the notations, see the following definitions.) In order to generalize this problem, we simply give the following definitions.

Complex $K \cdots \cdots$ a finite simplicial complex whose dimension is n. $\mathscr{L}^{p}(K) \cdots \cdots$ the p-dimensional chain group of K with real coefficients. This is an n-dimensional vector space. A chain is denoted by C^{p}. The inner product of two chains C^{p} and $C_{1}^{p} \cdots \cdots$ If

$$
C^{p}=\sum g_{i} \sigma_{i}, \quad C_{1}^{p}=\sum g_{i}^{\prime} \sigma_{i}
$$

(σ_{i} are the p-dimensional simplices of K), then the inner product $C^{p} \cdot C_{1}^{p}$ is defined by $\sum g_{i} g^{\prime}{ }_{i}$.
$\partial, \delta \cdots \cdots$ the usual boundary and coboundary operations in K.
$\mathcal{F}_{p}, Z^{p} \cdots$ the groups of all cycles and cocycles, respectively. These are linear subspaces of the vector space \mathscr{L}^{p}.
$\mathscr{R}_{p}, P^{p} \ldots \ldots$ the groups of all bounding cycles and cocycles respectively. $D, C \cdots \cdots$ a partition of the set of all $(p+1)$-dimensional simplices of K.
$I, B . \cdots \cdots$ a partition of the set of all p-dimensional simplices of K.
$V_{D}, V_{C}, V_{I}, V_{B} \cdots \cdots$ the vector spaces spanned by the simplices of D, C, I and B.
$\operatorname{Condition}\left(E_{p}\right) \quad \mathcal{F}_{p+1} \subset V_{D}, \quad \partial V_{D} \subset V_{1}$.
$K^{*} \ldots \cdots(p+1)$-dimensional complex made of the simplices of D, I and their faces.

3. The 2 -nd boundary value problem

Let $g(c)$ be a given function defined on C, i.e. g is a vector of V_{c}. To find a p-dimensional chain (vector) f such that

$$
\begin{cases}\delta f=g & \text { on } C \\ \partial \delta f=0 & \text { on } l .\end{cases}
$$

THE MAIN THEOREM. The above problem is solvable iff and only if $Z^{p}\left(K^{*}\right) \cdot \partial g=0$, and the solution is unique modulo cocycles, provided that the conditicon (E_{p}) holds.

PROOF. Let us suppose that there exists at least one solution.
Then

$$
\begin{aligned}
& \delta f=g+g_{\mathrm{D}} \quad \text { for some } g_{D} \in V_{\mathrm{D}} \\
& \partial \delta f=\partial g+\partial g_{\mathrm{D}}, \quad \partial g=\partial \delta f-\partial g_{\mathrm{D}}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& Z^{p}\left(K^{*}\right) \cdot \partial \delta f \subset Z^{p}\left(K^{*}\right) \cdot V_{B} \\
& \subset \mathscr{K}^{b}\left(K^{*}\right) \cdot V_{B}=V_{I} \cdot V_{B}=0 \\
& \begin{aligned}
Z^{p}\left(K^{*}\right) \cdot \partial g_{D} & =Z^{p}\left(K^{*}\right) \cdot \partial_{*} g_{D}=\delta * Z^{p}\left(K^{*}\right) \cdot g_{D} \\
& =0 \cdot g_{D}=0,
\end{aligned}
\end{aligned}
$$

where ∂_{*} and δ_{*} are the boundary and coboundary operations of K^{*}. Hence

$$
\partial g \cdot Z^{p}\left(K^{*}\right)=0
$$

Conversly let us suppose that the above relation holds.

$$
\mathscr{L}^{p}=V_{I}+V_{B}=\mathscr{K}^{p}\left(\mathrm{~K}^{*}\right)+V_{B}=Z^{p}\left(K^{*}\right)+\mathscr{2}_{p}\left(K^{*}\right)+V_{B} .
$$

Therefore

$$
\partial g \in R_{p}\left(K^{*}\right)+V_{B} .
$$

So we can find $g_{D} \in V_{D}, f_{B} \in V_{B}$ such that

$$
\partial g=\partial g_{D}+f_{B}
$$

Now let \mathcal{F}_{p+1} be the orthognal projection of $g-g_{D}$ on \mathcal{F}_{p+1}; that is

$$
\left(g-g_{D}-\mathcal{F}_{p+1}\right) \cdot \mathscr{F}_{p+1}=o, \quad \mathcal{F}_{p+1} \in \mathcal{F}_{p+1},
$$

then

$$
g-g_{D}-\mathcal{Z}_{p+1} \in P^{p+1},
$$

and there exists an f such that

$$
\delta t=g-g_{D}-\mathcal{Z}_{p+1}
$$

Because

$$
\begin{aligned}
& \mathcal{F}_{p+1} \in \mathcal{F}_{p+1} \subset V_{\mathrm{D}}, \\
& \delta f=g \quad \text { on } C .
\end{aligned}
$$

And

$$
\begin{aligned}
& \partial \delta f=\partial g-\partial g_{D}-\partial \mathcal{Y}_{p+1}=\partial g-\partial g_{D}=f_{B} \\
& \partial \delta f=0 \quad \text { on } I .
\end{aligned}
$$

Finally, we will prove the uniqueness. Let f_{1} be another solution of the problem,

$$
\begin{array}{ll}
\delta f=\delta f_{1}=g & \text { on } C, \\
\partial \delta f=\partial \delta f_{1}=0 & \text { on } l .
\end{array}
$$

Then
$\delta\left(f-f_{1}\right)=0 \quad$ on C, and
$h=\delta\left(f-f_{1}\right) \in V_{D}$
$\partial h=0 \quad$ on I, so $\partial h \in V_{B}$
But from (1), $\quad \partial h \in \partial V_{D} \subset V_{I}$.
This, together with (2) yields $\partial h=0$,
that is
$h \in \mathcal{Z}_{p+1}$
But
$h=\delta\left(f-f_{1}\right) \in P^{\phi+1}$, so
$h \in \mathcal{F}_{p+1} \cap P^{p+1}=0$.
4. Case $p=0$

The condition $Z^{p}\left(K^{*}\right) \cdot \partial g=0$ becomes $Z^{\circ}\left(K^{*}\right) \cdot \partial g=0$
Let $K_{i}^{*}(i=1,2, \cdots, l)$ be the components of K^{*}. If ζ_{i}° is the fundamental cocycle of K_{\imath}^{*}, then the condition is expressed as $\zeta_{i} \cdot \partial g=0 \quad$ for all i.

This means that the sum of the values of g on those edges issuing from K_{i}^{*} is 0 for all i. This is a similar result to

$$
\int_{B_{1}} g d s=0 \quad \text { for the continuous case. }
$$

1-dimensional complex satisfying (E_{1}) can be obtained as follows.
Let K^{*} be an arbitrary 1 -dimensional finite simplicial complex whose components we denote by $K_{i}^{*}(i=1,2, \cdots, l)$. The edges and vertices
of K^{*} are the simplices of D and I. We enlarge K^{*} i by putting arbitrary trees on its vertices, obtaining enlarged components $K^{* *}$, we can connect arbitrary components $K^{* *}$; to other components $K^{* *}{ }_{j}$ by trees. But if $K^{* *}$ i is connected to $K^{* *}{ }_{j}$, and $K^{* *_{j}}$ is connected to $K^{* *}$, then connecting $K^{* *}{ }_{i}$ to $K^{* *}{ }_{i}$ is forbidden.

Finally we can augment thus obtained complex by adding arbitrary separate trees which shall make components by themselves in the finally obtained complex K. The edges and vertices of K which do not belong to K^{*} are the vertices of C and B.

October, 1959
Mathematical Department
Liberal Arts and Science College
Seoul National Uiniversity

REFERENCE

[1] Beno Eckmann, Harmoniscke Funktionen und Randwertaufgaben in einem Komplex, Commentarii Mathematici Helvetici, Vol. 17, 1944. pp, 240-255.

