THE TOPOLOGIES OF PARTIALLY ORDERED SET WITH FINITE WIDTH

By Tae Ho Choe

1. Introduction

Recently, E. S. Wolk [1] has introduced the concept of order-compatible topology for partially ordered sets (poset), and has proved the following theorm:

If P is a poset of finite width, then P possesses a unique order-compatible topology. Furthermore, with respect to this topology, P is a Hausdorff space.

In this paper, we shall introduce the new simple topology for poset which we call C-topology and compare with certain topologies and with order-compatible topology (=OCT) on the same poset P.

Let us introduce, first, the following definition.

DEFINITION. Let M be a subset of P, we shall say that a is C-limiting point of M if and only if there is such a chain C containing no a that C is included in M and $\bigwedge C = a$, or $\bigvee C = a$ in P

And let $\overline{M}=M\cup M'$ (M' is the set of all C-limiting point of M), we call \overline{M} the closure of M. Also define a subset M of poset P to be closed in the C-topology if and only if $\overline{M}=M$, let CT denote the C-topology.

To this end, let us call a subset S of P up-direct (down-derect) if and only if for all $x \in S$, and $y \in S$, there exists $z \in S$ with $z \ge x$, $z \ge y$ $(z \le x, z \le y)$ [1].

Also we shall call a subset K of P Dedekind-closed if and only if whenever S is an up direct subset of K and $y = \bigvee S$, or S is a down direct of K and $y = \bigwedge S$, we have $y \in K$.

We define that two elements x and y are incomparable if and only if neither $x \le y$ nor x > y, and we denote x # y.

Let us say a subset D of P diverse if and only if $x \in D$, $y \in D$ and $x \neq y$ imply $x \neq y$. And define the width of P to be the 1. u. b. of the set $\{k \mid k \text{ is the cardinal number of a diverse subset of } P\}$.

In § 3, We shall then prove that in a poset of finite width the interval topology and C-topology are equivalent. And we shall see, by lemma 1, the interval topology, any compatible topology, Dedekind topology, order topology and C-topology are all equivalent.

Finally, we shall give some corollaries.

2. Definitions and Notations.

Let $\{x_{\alpha}\}$ be any direct set in a subset X of a poset P. We define x_{α} order-converges to a to mean $a = \bigvee_{\alpha} \{\bigwedge_{\beta \geq \alpha} x_{\beta}\} = \bigwedge_{\alpha} \{\bigvee_{\beta \geq \alpha} x_{\beta}\}$ in the completion of P by cuts. As usual, we define a subset X of a poset to be closed in the order-topology, denotes OT, if and only if $\{x_{\alpha}\} \subseteq X$ and x_{α} order-converges to a implies $a \in X$.

In P, we write

$$M(x)=\{a\mid x\leq a\},\ L(x)=\{a\mid a\leq x\}\ \text{for each }x\in P.$$

The interval topology [2] is that topology generated by taking all of the set $\{M(x), L(x) \mid x \in P\}$ as a subbasis for the closed sets. Let us denote IT. It is well-known that the topology IT is weaker than the topology OT, and every poset P is Hausdorff space in topology OT.

If R_1 and R_2 are any topologies on P, we define $R_1 \le R_2$ to mean that every R_1 -closed set is R_2 -closed. It is then easy that $OT \le CT$, in fact, let subset of X of P be a closed set in OT. If the point a is a C-limiting point of X, then there exists chain $C = \{c_{\alpha}\}$ in X such that $\bigwedge c_{\alpha} = a$, or $\bigvee c_{\alpha} = a$. Assume $\bigwedge c_{\alpha} = a$, where $c_{\alpha} \ge c_{\beta}$ in P if and only if $c \le \beta$ in a chain directed indices class Γ , then $a = \bigwedge_{\alpha} \{\bigvee_{\beta \ge \alpha} c_{\beta}\} = \bigvee_{\alpha} \{\bigwedge_{\beta \ge \alpha} c_{\beta}\}$ in completion of P by cuts.

We define a topology DT on P whose closed sets are precisely the Dedekind closed sebsets of P. Then we see that $DT \le CT$. In fact, let subset X of P be a closed set in DT, Then X is Dedekint closed. If the point a is a C-limiting point of X such that $\bigwedge C = a$ (or $\bigvee C = a$) for

a chain $C \subseteq X$, since chain C is an upper direct set, then $a \in X$. Similarly, for $\bigvee C = a$. By the lemma in [1], $IT \leq OCT \leq DT$. Hence, we have the following lemma

LEMMA 1. $IT \leq OCT \leq DT \leq CT$ and $IT \leq OT \leq CT$

3. The principal theorems

The author has proved the following theorem [3]

A necessary and sufficient condition for an element a of a poset P to be isolated to subset X in IT is that, for the element a there exist the finite subsets A and B of P such that

- (i) $A = \{x \mid x \# a, or x > a\}, B = \{y \mid y \# a, or y < a\},$
- (ii) $(M(x))_{x \in A}$, $(L(y))_{y \in B}$ are a covering of X-a (i.e., Union of the collection includes X-a)

And we now prove the following

THEOREM 1. Let P be a poset of finite width, then a necessary and sufficient condition for an element a to be isolated to subset X in CT is that, for the element a there exist the finite subsets A and B of P satisfying (i) and (ii).

PROOF In view of the above theorem and lemma, we need only to prove the necessary.

Let $S = \{x \mid x \in X - a \text{ and } x > a\}$, Let k be width of P. The number of all the least elements $l_x \in S$ of a maximal chain of S are k at most, let $E = \{l_1, l_2, \dots l_m\}$.

Let C be arbitrary maximal chain containing no the least elemnet in S if exist. There exists at least one point $x \in P - S$ with a < x < c for all $c \in C$. In fact, let us suppose that our requierment is false, then A = a, i.e., a is a C-limiting point of X which is contrary.

Let C_z be a maximal chain of S containing no the least element in S, and let x_z be the point of P-S such that $a < x_z < c$ for all $c \in C_z$ ($i = 1, 2, \cdots$). If $x_1 > x_2 > x_3 > \cdots$ and when there exists the point $c_z \in C_z$

with $c_z \in M(x_{z-1})$, then such x_z s are at most k. In fect, since $c_z \in M(x_t)$, there exists at least one $y_1 \in C_1$ with $c_2 \# z_1$ for all $z_1 \le y_1$ in C_1 . Otherwise, $c_2 \le c$ for all $c \in C_1$, but $c_2 \in C_1$, hence we have contradiction to the maximality of C_1 . Similarly, for $c_3 \in M(x_2)$, we have $y_2 \in C_2$ with $c_3 \# z_2$ for all $z_1 \le y_2$, in C_2 . And since $c_3 \in M(x_1)$, we have also $y_1 \in C_1$ with $c_3 \# z_{13}$ for all $z_1 \le y_{13}$ in C_1 . If now $c_2 \le y_2$ in C_2 and $y_1 \le y_1$ in C_1 , then $\{y_{13}, c_2, c_3\}$ is diverse set. If $y_1 < y_{13}$ in C_1 , then $\{y_1, c_2, c_3\}$ is diverse set.

If $c_2 > y_2$ in C_2 , we can see easily that $y_2 \notin M(x_1)$ and we have $y_{12} \in C_1$ with $y_2 \# z_{12}$ for all $z_{12} \le y_{12}$ in C_1 . And if $y_{12} \le y_{13}$ in C_1 , we have $\{y_{12}, y_2, c_3\}$ is diverse set. If $y_{13} < y_{12}$ in C_1 , $\{y_{13}, y_2, c_3\}$ is diverse set. Hence for any case, we have a diverse set of three elements, if exist the three maximal chains with the above porperties. Therefore, relative comparable x_2 are at most k, since if there exist more than k elements x_2 , then continuing the above construction leads to a diverse set with more than k elements.

Let $F = \{m_1, \dots, m_p\}$ be the set of all the minimal elements of relative comparable $x_z s$. Clearly, F is a finite set, $(p \le k)$. Thus we have $\bigcup_{x \in E \cap F} M(x) \supseteq S$.

Let $S' = \{y \mid y \in X - a, \text{ and } y < a\}$. Dually, we have the finite subsets $G = \{g_1, \dots, g_n\}$, $H = \{n_1, \dots, n_q\}$ of P such that $\bigcup_{y \in GUH} L(y) \supseteq S'$ And let $N = \{a, u_1, \dots, u_l\}$ be a maximal diverse set containing a. It is clear that if put $A = E \cup F \cup (N-a)$, $B = G \cup H \cup (N-a)$, then

$$(\bigcup_{x\in A}M(x))\cup(\bigcup_{y\in B}L(y))\supseteq X-a.$$

Hence the proof is complete.

If P be a poset of finite width, a point a is isolated to a subset M of P in CT if and only if a is also isolated to M in IT. That is, a point b is a limiting point of M in IT if and only if b is also a limiting point of M in CT.

Thus, by lemma, we have

THEOREM 2. If P is a poset of finite width. then topologies IT, any OCT, DT, OT, and CT are all equivalent.

In the special case when P is a lattice, we have conversely the following.

LEMMA 2 Let P be a lattice. If topology IT and topology CT are equivalent, then P has no infinite diverse set.

In fact, let us suppose that the lemma is false, and let D be an infinite diverse set, then D is clearly closed set in CT. Hence, by Hypothese, D is also a closed set in IT. Since P is a lattice, we may find the finite closed intervals $I_1, I_2, \dots I_n$ such that $D = I_1 \cup I_2 \cup \dots \cup I_n$ [4]. But there is no such finite closed interval in infinite diverse set D.

We now have the folloing theorem

THEOREM 3. Let P be a lattice with least and greatest elements. P has no infinite diverse set if and only if topology IT and topology CT are equivalent.

COROLLARY 1. Let P be a poset of finite width, then P possesses a unique ordered-compatible topology. Furthermor, with respect to this topology, P is a Hausdorff space. (This theorem has already been solved by E. S. Wolk [1]).

In fact, topology OT is Hausdorff, and OT and OCT are equivalent.

COROLLARY 2. Let P be a poset of finite width and let $\{x_{\alpha}\}$ be a direct set such that $a = \bigwedge_{\alpha} \{\bigvee_{\beta \geq \alpha} x_{\beta}\} = \bigvee_{\alpha} \{\bigwedge_{\beta \geq \alpha} x_{\beta}\}$, then there exists a chain $C \subseteq \{x_{\alpha}\}$ such that $\bigwedge_{\alpha} C = a$, or $\bigvee_{\alpha} C = a$.

COROLLARY 3, Let P be a complete lattice with no infinite diverse set, then P is compact Hausdorff space in topologies IT, OCT, DT, OT, CT.

May 2, 1959
Mathematical Department
Liberal Arts and Science College
Kyungpook University

REFERENCES

- [1] E. S. Wolk, Order-compatible topologies on a partially ordered set, Porc. Amer, Math. Soc. vol.9 (1958) pp. 524-529.
- [2] G. Birkhoff, Lattice theory, rev. ed., New York (1948)
- [3] T. H. Chee, An isolated point in a partly ordered set with interval topology, Kyungpeek Math. Jour. vol.1, no.2 (1958) pp. 57-59.
- [4] E. S. Northam, The interval topology of a lattice, Proc. Amer. Math. Soc. 4 (1953).