BOCHNER'S LEMMA ON THE CRAIG EXTENSOR FIELD

By Sang-Seup Eum

1. Introduction.

In this paper I will apply the Bochner's lemma [1] on the extensor field which was introduced by H. V. Craig [2].

Let us consider an n-dimensional compact orientable Riemannian manifold V_n whose metric is defined by the definite quadratic form

$$ds^{2} = g_{ik}dx^{i}dx^{k}$$

and whose element is an arc in V_n , given by n regular functions $x^i = x^i(t)$ where 't' is a fixed parameter. We shall use only different set of indicies to distinguish between different coordinate systems, eg. (x^i) and (x^r) etc, $(i,j,k,\dots=1,2,\dots,n)$. Moreover, we shall use bracketed Greek indicies α, β, γ etc. $(\alpha, \beta, \gamma, \dots=1, 2, \dots, M)$ to indicate differentiations with respect to 't'.

By using the relation [2]

(1. 1)
$$X_{(\beta)_r}^{(\alpha)_i} = \binom{A}{B} X_r^{i(A-B)} \qquad A = \alpha \text{ and } B = \beta$$
 where

(1. 2)
$$X_{(\beta)_r}^{(\alpha)_i} = \frac{\partial x^{(\alpha)_i}}{\partial x^{(\beta)_r}} \qquad X_r^i = \frac{\partial x^i}{\partial x^r} \quad \text{and} \quad x^{(\alpha)_i} = \frac{d^\alpha x^i}{dt^\alpha}$$

the fundamental metric extensor and the extended Christoffel symbols were defined respectively, such that [2]

$$g_{\alpha i\beta j} = \binom{M}{AB} g_{ij}^{(M-A-B)} \qquad M \ge A+B, \quad A = \alpha \quad \text{and} \quad B = \beta$$

$$(1.3) \qquad g^{\alpha i\beta j} = \binom{AB}{M} g^{ij(A+B-M)} \qquad A+B \ge M$$

$$\Gamma_{\alpha i\beta j}^{\gamma k} = \binom{C}{AB} \Gamma_{ij}^{k} \stackrel{(C-A-B)}{\longrightarrow} \qquad C \ge A+B \quad \text{and} \quad C = \gamma$$

where

$$\begin{pmatrix} A \\ BC \end{pmatrix} = \frac{A!}{B!C!(A-B-C)!} \qquad A \ge B+C$$

$$= 0. \qquad A < B+C$$

$$\begin{bmatrix} AB \\ M \end{bmatrix} = \frac{A!B!}{M!(A+B-M)!} \qquad A+B \ge M$$

$$= 0. \qquad A+B < M$$

Here, we define the curvature extensor $R_{\beta j \gamma k \delta l}^{\alpha i}$ corresponding to the curvature tensor R_{jkl}^{i} in V_{n} , such that

(1. 4) $R_{\beta j\gamma k\delta l}^{\alpha i} = ({}_{BCD}^{A})R_{jkl}^{i}{}^{(A-B-C-D)}$ $A=\alpha, B=\beta, C=\gamma \text{ and } D=\delta$ where

$$\begin{pmatrix} A \\ BCD \end{pmatrix} = \frac{A!}{B! C! D! (A-B-C-D)!}$$

$$A \ge B+C+D$$

$$A < B+C+D$$

therefore, we can easily calculate by using (1. 1)

(1.5) $R_{\beta j\gamma k\delta l}^{\alpha i} = \Gamma_{\beta i\gamma k}^{\alpha i}, \quad \delta_{l} - \Gamma_{\beta j\delta l}^{\alpha i}, \quad \gamma_{k} + \Gamma_{\beta j\gamma k}^{\epsilon s} \Gamma_{\epsilon s\delta l}^{\alpha i} - \Gamma_{\beta j\delta l}^{\epsilon s} \Gamma_{\epsilon s\gamma k}^{\alpha l}$ and for any exvector $\xi^{\alpha i}$, or $\xi_{\beta j}$

$$(1.6) \begin{array}{c} \xi^{\alpha i}_{;\gamma_k;\delta_l} - \xi^{\alpha i}_{;\delta_l;\gamma_k} = \xi^{\beta j} R^{\alpha i}_{\beta j\gamma_k\delta_l} \\ \xi_{\beta j;\gamma_k;\delta_l} - \xi_{\beta j;\delta_l;\gamma_k} = -\xi_{\alpha i} R^{\alpha}_{\beta j\gamma_k\delta_l} \end{array}$$

where ';' denotes the excovariant derivative with respect to $I_{\beta j \gamma k}^{\alpha i}[3]$.

2. Bochner's lemma on the extensor field.

In the above Riemannian manifold V_n , the Laplacean of $\phi(x)$ is defined by

(2. 1)
$$\Delta \phi = g^{jk} \phi_{:j:k} = g^{jk} \frac{\partial^2 \phi}{\partial x^j \partial x^k} - g^{jk} \left\{ \frac{i}{jk} \right\} \frac{\partial \phi}{\partial x^i}$$

where ':' denotes the covariant derivative with respect to Γ_{ij}^{k}

Here, we define the ex-Laplacean of $\Psi(x(t)) = \phi^{(M)}(x,t)$ such that

$$(2. 2) \qquad \overline{\triangle} \Psi = g^{\beta j \gamma k} \phi^{(M)}_{;\beta j;\gamma k} = g^{\beta j \gamma k} \frac{\partial^2 \phi^{(M)}}{\partial x^{(\beta)j} \partial x^{(\gamma)k}} - g^{\beta j \gamma k} \Gamma^{\alpha i}_{\beta j \gamma k} \frac{\partial \phi^{(M)}}{\partial x^{(\alpha Y i)}}$$

then, we can easily see the following relation by using (1.1) and (1.3)

$$(2.3) \qquad \overline{\triangle} \Psi = (M+1) \triangle \phi \qquad (M \ge 0)$$

therefore, if a exfunction Ψ satisfies $\Delta \Psi \ge 0$, then $\Delta \phi \ge 0$ is satisfied for a function $\phi(x)$. We can apply the so-called Bochner's lemma on the above extensor field:

THEOREM 2. 1 In a compact Riemannian manifold with positive definite metric, if a exfunction $\Psi(\mathbf{x}(t)) = \phi^{(M)}(\mathbf{x}(t))$, satisfies

$$\triangle \phi^{(M)} \ge 0$$
 i.e. $\triangle \Psi \ge 0$ $(M \ge 0)$

everywhere in the manifold, then we have

$$\Psi=0$$
, $\phi=constant$ and $\Delta\Psi=0$ $(M\geq 0)$

everywhere in the manifold. [1]

Theorem 2.5 in [1] implies as follows

THEOREM 2. 2 In a compact orientable Riemannian manifold V_n , for any exscalar field $\Psi(x(t)) = \phi^{(M)}(x(t))$, we have

$$\int_{\mathbf{V}_n} \overline{\triangle} \psi^{(M)} dV = 0 \qquad [1]$$

In this paper we consider only the exvector such that

(2.5)
$$\xi^{\alpha i} = \xi^{i(A)} \qquad A = \alpha,$$

$$\xi_{\alpha i} = g_{\alpha i\beta j} \xi^{\beta j} = {M \choose A} \xi_{i}^{(M-A)}$$

and we put

$$(2.6) \qquad \Psi = \xi^{\alpha i} \xi_{\alpha i}, \quad \phi = \xi^{i} \xi_{i}$$

then we can easily see by (2. 5)

(2. 7)
$$\Psi = \sum_{A} {M \choose A} \xi^{i(A)} \xi_{i}^{(M-A)} = (\xi^{i} \xi_{i})^{(M)} = \phi^{(M)}$$

and

On the otherehand, by a straightforward calculation, we find

(2.9)
$$\overline{\Delta} \Psi = 2(\xi^{\alpha i;\beta j} \xi_{\alpha i;\beta j} + g^{\alpha i\beta j} \xi^{\gamma k} \xi_{\gamma k;\alpha i;\beta j})$$

where we have put

$$\xi^{\alpha i \beta j} = \xi^{\alpha i}_{i \gamma k} g^{\beta j \gamma k}$$

Now

$$\xi^{\alpha i;\beta j} \xi_{\alpha i;\beta j} = (M+1) \xi^{i;j} \xi_{i:j}$$

is a positive definite form in $\xi_{i:i}$, and

$$g^{\alpha i \beta j}(\xi^{\gamma k} \xi_{\gamma k;\alpha i;\beta j}) = (M+1)g^{ij} \xi^{k} \xi_{k;i;j}$$
 $T_{\alpha i \beta j} \xi^{\alpha i} \xi^{\beta j} = (T_{ij} \xi^{i} \xi^{j})^{(M)}$

therefore if ξ_i satisfies

(2.10)
$$g^{ij}\xi^{k}\xi_{k:i:j} = \frac{1}{M+1} (T_{ij}\xi^{i}\xi^{j})^{(M)}$$

and if the quadratic form $T_{ij}\xi^i\xi^j$ satisfies

$$(T_{ij}\xi^i\xi^j)^{(M)} \ge 0$$

then we have

$$\nabla \Psi \geq 0$$

Consequently, from Theorem 2. 1, we get

$$\triangle \Psi = 0, \quad \Psi = 0$$

CI

$$\xi_{\alpha i:\beta j} = 0$$

and also $T_{\alpha i\beta j}\xi^{\alpha i}\xi^{\beta j}=0$, and if the exquadratic form $T_{\alpha i\beta j}\xi^{\alpha i}\xi^{\beta j}$ is positive definite, then we can conclude from $T_{\alpha i\beta j}\xi^{\alpha i}\xi^{\beta j}=0$ that $\xi^{\alpha i}=0$. Thus we have

THEOREM 2. 3 In a compact Riemannian manifold V_n , there exists no exvector $\xi^{\alpha_i} = \xi^{i(A)}$ which satisfies relations

$$g^{ij}\xi^k\xi_{k:i:j} = \frac{1}{M+1} (T_{ij}\xi^i\xi^j)^{(M)}, \qquad (T_{ij}\xi^i\xi^j)^{(M)} \ge 0$$

unless we have

$$\xi_{\alpha i;\beta j} = 0$$

and then automatically $T_{\alpha i\beta j}\xi^{\alpha i}\xi^{\beta j}=0$.

3. Harmonic exvectors and Killing exvectors.

An exvector is called harmonic exvector if it satisfies the conditions

(3. 1)
$$\begin{aligned} \xi_{\alpha i;\beta j} - \xi_{\beta j;\alpha i} &= 0 \\ \xi^{\alpha i}_{;\alpha i} &= (M+1)\xi^{i}_{:i} &= 0 \end{aligned}$$

and Killing exvector if

$$(3. 2) \qquad \xi_{\alpha i \beta j} + \xi_{\beta j;\alpha i} = 0$$

We can easily see that

(3.3)
$$\xi_{\alpha i;\beta j} \pm \xi_{\beta j;\alpha i} = \binom{M}{AB} \left[\xi_{i;j} \pm \xi_{j;i} \right]^{(M-A-B)}$$
$$A = \alpha \quad \text{and} \quad B = \beta$$

From (1. 6) we obtain

(3.4) $\xi_{\delta li\beta ji\gamma k} - (\xi_{\delta li\beta j} - \xi_{\beta ji\delta l})_{i\gamma k} - \xi_{\beta ji\gamma ki\delta l} = -\xi_{\alpha i} R^{\alpha i}_{\beta j\delta l\gamma k}$ or, multiplying by $g^{Mt\delta l}$ and contracting

$$\begin{split} \xi^{Mt}_{;\beta j;\gamma k} - g^{Mt\delta l} [\xi_{\delta l;\beta j} - \xi_{\beta j;\delta l}]_{;\gamma k} - g^{Mt\delta l} \xi_{\beta j;\gamma k;\delta l} \\ = -g^{Mt\delta l} \xi_{\alpha i} R^{\alpha i}_{\beta j\delta l\gamma k} \end{split}$$

Futhere-more, we can easily see that

$$g^{\beta j \gamma k} g^{M t \delta l} \xi_{\beta j j \gamma k i \delta l} = \sum_{B \in C} {BC \choose M} g^{j k (B + C - M)} {M \choose BC} (g^{t l} \xi_{j:k:l})^{(M - B - C)}$$

$$= (M + 1) g_{jk} g^{t l} \xi_{j:k:l} = (M + 1) g^{t l} \xi^{j}_{:j:l}$$

Thus, if the exvector $\xi^{\alpha i}$ be harmonic then it satisfies

$$(3.5) g^{\beta j\gamma k} \xi^{Mt}_{\beta j\gamma k} = -g^{\beta j\gamma k} g^{Mt\delta l} \xi_{\alpha i} R^{\alpha i}_{\beta j\delta l\gamma k}$$

Conversely if (3. 5) be satisfied, by the relations

$$g^{\beta j\gamma k} \xi^{Mt}_{:\beta j;\gamma k} = (M+1)g^{jk} \xi^{t}_{:j:k}$$

$$-g^{\beta j\gamma k} g^{Mt\delta l} \xi_{\alpha i} R^{\alpha i}_{\beta j\delta l\gamma k} = (M+1)R^{t}_{j} \xi^{j}$$

we have

$$g^{jk}\xi^{t}_{:j:k}=R^{t}_{j}\xi^{j}$$

then, ξ^i be harmonic vector, ([1], Theorem 2. 15) therefore by (3. 3) $\xi^{\alpha i}$ also be harmonic exvector.

As to the Killing exvector we have also the same assertion by using

$$-\xi_{\delta l;\beta j;\gamma k} + (\xi_{\delta l;\beta j} + \xi_{\beta j;\delta l})_{;\gamma k} - \xi_{\beta j;\gamma k;\delta l} = -\xi_{\alpha i} R^{\alpha i}_{\beta j\delta l\gamma k}$$
 and

(3.7)
$$g^{\beta j\gamma k} \xi^{Mt}_{;\beta j;\gamma k} = g^{\beta j\gamma k} g^{Mt\delta} \xi_{\alpha i} R^{\alpha i}_{\beta j\delta l\gamma k}$$
$$\xi^{\alpha i}_{;\alpha i} = 0$$

Consequently we have the following:

THEOREM 3. 1 In a compact orientable Riemannian manifold V_n , a necessary and sufficient condition that an exvector $\xi^{\alpha i}$ which derived from ξ^i by (2. 5) be a harmonic one or a Killing one is that it satisfies (3. 5) and (3. 7) respectively.

Let $\xi_{\alpha i}$ be a harmonic exvector, then from (3. 4) we have

$$(\xi_{\alpha i;\beta i;\gamma k} - \xi_{\beta i;\gamma k;\alpha i})\eta^{\alpha i} = -\xi_{\lambda i}R^{\lambda i}{}_{\beta i\alpha i\gamma k}\eta^{\alpha i}$$

or multiplying by $g^{\beta j\gamma k}$ and contracting

$$(3.8) \qquad g^{\beta j\gamma k}(\xi_{\alpha i\beta \beta j\gamma k}\eta^{\alpha i}) = -g^{\beta j\gamma k}(\xi_{\lambda t}R^{\lambda t}_{\beta j\alpha i\gamma k}\eta^{\alpha i})$$

$$= -(M+1)g^{jk}\xi_{t}R^{t}_{\beta ik}\eta^{i} = (M+1)R_{ti}\xi^{t}\eta^{i}$$

Further-more let $\eta^{\alpha i}$ be a Killing exvector, then from (3. 6) we have $\eta^{\alpha i}_{\beta i;\gamma k} + \eta_{\beta i;\gamma k;\delta l} g^{\alpha i\delta l} = (\eta_{\lambda l} R^{\lambda l}_{\beta i\delta l\gamma k}) g^{\alpha i\delta l}$

or

$$\xi_{\alpha i}(\eta^{\alpha i}_{\beta j;\gamma k} + \eta_{\beta j;\gamma k;\delta l}g^{\alpha i\delta l}) = \xi_{\alpha i}(\eta_{\lambda l}R^{\lambda l}_{\beta j\delta l\gamma k}g^{\alpha i\delta l})$$

or multiplying by $g^{\beta / \gamma k}$ and contracting,

(3.9)
$$g^{\beta j \gamma k}(\xi_{\alpha i} \eta^{\alpha i}_{\beta j \gamma k}) = g^{\beta j \gamma k}(\xi_{\alpha i} \eta_{\lambda i} R^{\lambda t}_{\beta j \delta l \gamma k} g^{\alpha i \delta l})$$
$$= (M+1)g^{jk} \xi_{i} \eta_{i} R^{t}_{jlk} g^{il} = -(M+1)R_{ti} \xi^{t} \eta^{i}$$

Here, let us call $\xi_{\alpha i} \eta^{\alpha i}$ the exlinear product of $\xi_{\alpha i}$ and $\eta^{\alpha i}$. If we apply the operator $\overline{\Delta}$ to the exlinear product of these two exvectors, we obtain

$$\overline{\Delta}(\xi_{\alpha i}\eta^{\alpha i}) = g^{\beta j\gamma k}(\xi_{\alpha i;\beta j;\gamma k}\eta^{\alpha i}) + 2\xi_{\alpha i;\beta j}\eta^{\alpha i;\beta j} + g^{\beta j\gamma k}(\xi_{\alpha i}\eta^{\alpha i};_{\beta j;\gamma k})$$

but, on the other hand, we have

$$\xi_{\alpha i;\beta j} \eta^{\alpha i;\beta j} = 0$$

then, from (3. 8) and (3. 9) we get

$$\overline{\triangle}(\xi_{\alpha i}\eta^{\alpha i})=0$$

Therefore, by Theorem 2. 1,

$$\xi_{\alpha i}\eta^{\alpha i}=0$$

and consequently we have the following

THEOREM 3. 2 In a compact Riemannian manifold V_n , the exlinear product of a harmonic exvector and a Killing exvector is zero. [1]

May. 1958

Mathematical Department,

Liberal Arts and Science College,

Kyungpook University

REFERENCES

- [1] K. Yano and S. Bochner: Curvature and Betti numbers, Ann. of Math. Studies No. 32 Princeton (1953).
- [2] H. V. Craig: On the structure of intrinsic derivatives, Bulletin Amer. Math. Soc. 52 (1947).
- [3] Y. Katsurada: On the non-holonomic connection of extensors, Tensor New Series, 1 (1951).