BOCHENER’S LEMMA ON THE CRAIG EXTENSOR FIELD

By Sang-Seup Eum

1. Introduction.

In this paper I will apply the Bochner’s lemma [1 on the extensor
field which was introduced by H. V. Craig [ 2.

Let us consider an #-dimensional compact orientable Riemannian
manifold V, whose metric is defined by the definite quadratic form

ds*=gdx’dx"

and whose element is an arc in V,, given by # regular functions
x'=x'(t) where 't' is a fixed parameter. We shall use only different set
of indicies to distinguish between different coordinate systems, eg.
(%) and (x7) etc, (2,7,k, - =1,2,--,n). Moreover, we shall use
bracketed Greek indicies @,8,y etc. (@,B,qy,=1,2,-+-+,M) to
indicate differentiations with respect to 't'.

By using the relation [ 2]

(1. 1) X5 =(5)X; 4" "A=e and B=8
where
| (@)i p % % E ox* y: dex?
(1 2) 'X(ﬂ)f ax(ﬂ)r -Xr"_' 51" and x(“’ = 73

.the fundamental metric extensor and the extended Chrlstoffel symbols
were defined respectively, such that f2_]
Zeipj=(an) & 48 M>A+B, A=a and B=8
(1.8) gI=[47]1gH4+ 0 A4+B>M
ke;=(5)r4€=4=8  C>A+B and C=:

where
| - AN Al e
| : (.Bcf’—, B!C!(A-*B—C)!ﬁ | A=B+C
| =0, A< B+C
AB A!'B!
f[M_J MT(A+B—M) A+B=M

~0. A+B<M
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Here, we define the curvature extensor R%is; correspronding to the
curvature tensor R%,; in V,, such that

(1. 4) B ks 1= (BCD)RJH(A_B_C_D) A=a, B=F, C=v and D=4
where
1
(BéD) ‘“"BTCIDr(AA B—-C—-D)! AzB+C+D
| =Q AL B+C+D
therefore, we can easily calculate by using (1. 1)
(1. 5) RE s 1=D8bns 51— 8ists et a5l &5 — s L& L

and for any exvector £%, or &g,
(1 6) él‘.‘l‘! ks & | &ﬂ: EI"II:—'E g g;"‘fﬁﬁf
‘ EB;:*&:BI“‘EBiiSIHk:_EEE g)l"‘fkﬁi

P o

where ; denotes the excovariant derivative with respect to I %% (8],

2. Bochner’'s lemma on the extensor field.

In the above Riemannian manifold V,, the Laplacean of ¢(x) is
defined by |

ok ik O g a¢p
(2. 1) Dp=g"iyp=8"—"5——& {j.k} —
where ':' denotes the covariant derivative with respect to I'},
Here, we dfine the ex-Laplacean of ¥ (x(Z))=¢"*(x ¢)) such that
A~ T B ik 1 (M) B ik z(b(M) B jk 3‘35(”)
(2. 2) AQ :g gb ‘B J —g ax(B)Jax('I)‘ g rﬂ-”ik _x—-fi_

then, we can easily see the following relation by using (1. 1) and (1. 3)
(2. 3) AT =(M+1)Ad (M=0)
therefore, if a exfunction ¥ satisfies AP =0, then AP>0 is satisfied
for a function ¢(x). We can apply the so-called Bochner’s lemma on the
above extensor field:
THEOREM 2. 1 In a compact Riemannian wmanifold with positive
definite metric, if a exfunction ¥ (x(1))=¢*M(x(1)), satisfies

APM =0 i.e. AT =0 (MZ=0)
everywhere in the manifold, lhen we have
V=0, <¢=consiani and AFT=0 (M>0)

everywhere in the manifold, [ 1]
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Theorem 2.5 in [1] implies as follows
THEOREM 2.2 In a compact orientable Riemaﬂnian manifold
V. for any exscalar field w(x()=¢M(x(8)), we have

(2. 4) fv. B¢™dV =0 (1]
In this paper we consider only the exvector such that
e __ £i(A) A:ﬂ’,
(2. 5) §% =¢

ai=8eis;6% =D&

and we put

(2- 6) W-_—éﬁfcxn 95-——5;5:
then we can easily see by (2. 5)
(2. 7) = S(AIEAE, W = (£16,)M0 = M0
and g o
(2. 8) AT=(M+1)Ad |
On the otherehand, by a straightforward calculatiqn; we find
(2. 9) AT =2(ExBIE  a; 8% PIE™E riniing)

where we have put
é'a::'lﬂ S nc;'_“gﬂ Jk
Now ; | -
¥ PIE ugi=(M+1)§478,,
is a positive definite form in §;.;, and
gﬁw(gﬂfwkmn B!)=(M+ 1)3“5*'51'””
T¢33j6m553j=(T;;§I§!)(M)
therefore if &; satisfies -

i 1 -
(2.10) 86 k= M1 (T;,&:¢ )M
and if the quadratic form T',,£‘§’ satisfies
(T1;6°67)" =0 '

then we have

AT =20
Conseqently, from Theorem 2. 1, we get |
A¥=0, ¥=0
GI
¢eiipi=0
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and also T'g;p,;6*°£P/=0, and if the exquadratic form T,;p;£%'¢%’ is
positive definite, then we can conclude from T,;5;6%¢P/=0 that
¢*'=0. Thus we have

THEOREM 2. 3 In a compact Rzemcmman manifold V,, there
exists no exvector £%=¢+4) wkzch satzsfzes relations

(T 5 6!)(.14) o -(T.'.j§I€i>(M)20‘

g = M-—l—l
unless we have
Eﬂ:iiﬂjz‘_‘o
and then automatically Tg;p;6%E6%7=0.

3. Harmonic exvectors and Killing exvectors.

An exvector i1s called harmonic exvector if it satisfies the conditions - -

§u:£=Bj‘_‘SBjm£=O

@1 £ rai= (M A1) =
and Killing exvector 1f |
(3 2) EaisgitEpjiai=0
We can easily see that
(3. 3) EwiipitEpirai=( 48 E " :E?; ; (MmA=B)
A=a and B=86 -
From (1. 6) we obtain | | o
(3 4) éEIrBj'r'iﬁ""(éBUﬁj""‘SB.:'-EI)_H_#“"&‘BJ’HHBI:_éﬂiRmiﬂjsml

or, multiplying by g"*®’ and contracting

'8 2 M5
éMt:Bjifrk M ESEI-BJ—':.CB;:BIJHL- g Sﬂjﬂk 83
— Mtsl
= — gMitd 5m-RmBjsMk

Futhere-more, we can easﬂy see that
grimgMisie, F3NR S :':BECEBMng”(B*'C'-M)(Bﬂé )(g“Ej:n g Y H=B=CI

:(M+ll)gfkgﬂgf:ﬂhri.:;"(M‘"l'l)g“gj:!::
Thus, if the exvector £¢% be harmonic then it satisfies

(3 5) gBJ’:k‘SMr 83k = _gB:dkthstgw Rma;*;”k
Conversely if (3. 5) be satisfied, by the relations

GPIEM g e =(M+1)g7 ", f:k
_gﬂiﬂkthﬁféﬂiRw;Bjs I’Iﬁ:kM'{_ 1)RIJ_§J
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we have .

gt = T
then, & be harmonic vector, ([1], Theorem 2. 15) therefore by (3. 3)
&% also be harmonic exvector. '

As to the Killing exvector we have also the same assertion by using
3 '-.(31- ‘6) t '“55::3;;-,-&4‘ (55;;35""'551;5:);%‘“55;:11:;3:"—' _'.-.E:HRMMSM&
and
GRIREM = &P MY G R 5 15 1un
'fth.::r;':—'o

Consequently we have the following:

THEOREM 3. 1 In a compact ortentable Riemannian wmanifold
V.. a mecessary and sufficient condition that an exvector £*' which
derived from &° by (2. 5) be a harmonic one or a Killing one is that
1t satisfies (3. 8) and (3. 7) respectively.

Let £4; be a harmonic exvector, then from (3. 4) we have

(Safiﬂj?’rkﬂ55}?’7&?&':’)0“”:_éhtRhtBiﬂ'fﬂk‘zjuf
or multiplying -by g#’** and contracting ,
gﬂj”(fwxdﬁéhhvw;):““gﬂﬁk('fuRMBmm.’?M
| =—(M+1)g"*& R ;) =(M+1)R, ;6%
Further-more let 7** be a Killing exvector, then from (3. 6) we have
2% ajima T P51 8% = (W R g 5100 ) Q%0

(3. 7)

(3. 8)

19,9 .
_gu’f(r[ﬂi sB IR +7?B.f":‘k15‘!gw£81>:EWI(,?AIRR tﬁ}'ﬁ qug[rf&!)
or multiplying by g?/** and contracting,
(3. 9) gBjqk(‘f‘w;va?=B;'mk):gﬂfﬂ('furfvaMBjsngai“)
=(M~+1)g’* e, R, = —(M~+ 1R, ;£ %
Here, let us call &,,7%° the exlinear product of &,. and 7%, If we

apply the operator A to the exlinear product of these two exvectors, we
obtain

Z(fﬂ.’fvw;):gsjqk(.gws'iﬂj'iﬁkva-s)+2Eﬂ'flﬂf7‘:a£:3}.
+ GBI E iM% g ismn)
but, on the other hand, we have

Eqiin % PI=0
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then, from (3. 8) and (3. 9) we get
E(EM?}M)ZO
Therefore, by Theorem 2. 1, :
3 mﬂwzo
and consequently we have the following
THEOREM 3. 2 In a compact Riemiannian wmanifold V,, the

exlinear product of a harmonic exvecto? and a Killing exvector its
zero. [1] |
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