ON THE SEMI-SIMPLE GROUP SPACE WITH A KAEHLERIAN METRIC

By Sang-Seup Eum

1.

Let V be an orientable manifold of C^{ω} -class, of 2n dimensions. We consider a set of transformations of V, which are in one to one correspondence with the points of a space M, and we confine ourselves to the case in which M is a manifold of 2r dimensions $(r \ge n)$. Furthermore we assume that the set of transformations form an 2r-parameter compact semi-simple group, and that the following conditions are satisfied. Let (u_1, \dots, u_{2r}) be a local coordinate system on N valid in some neighbourhood, and let A be any point of this neighbourhood. The transformations T_A transform the points of a neighbourhood N of V into points of a neighbourhood N' of V. If (x_1, \dots, x_{2n}) is a coordinate system valid in N, and (x'_1, \dots, x'_{2n}) is a coordinate system valid in N', the transformation T_A where A has coordinates (u_1, \dots, u_{2r}) , transformes the point P, whose coordinates are (x_1, \dots, x_{2n}) into the point P' whose coordinates (x'_1, \dots, x'_{2n}) be given by

$$(1. 1) x'_{i} = \mathcal{P}_{i}(x_{1}, \dots, x_{2n}; u_{1}, \dots, u_{2r})$$

the functions are real analytic functions of (x_1, \dots, x_{2n}) and of (u_1, \dots, u_{2r}) , and the determinant $|\partial \mathcal{P}^i/\partial x_j|$ different from zero at any point of N for all positions of A. [1]

Now, if we put $\bar{\alpha} = n + \alpha$, $\bar{i} = r + i$ and

$$z_{\alpha} = x_{\alpha} + \sqrt{-1}x_{\bar{\alpha}}, \ \bar{z}_{\alpha} = x_{\alpha} - \sqrt{-1}x_{\bar{\alpha}} \quad (\alpha = 1, \dots, n)$$

$$s_i = u_i + \sqrt{-1}u_i, \quad \bar{s}_i = u_i - \sqrt{-1}u_i \quad (i = 1, \dots, r)$$

then we get following relations instead of (1. 1)

$$(1. 2) z'_{X} = \mathcal{P}_{X}(z_{\alpha}, \overline{z}_{\alpha}; s_{i}, \overline{s}_{i}) (X = 1, \dots, n, \overline{1}, \dots, \overline{n})$$

If we eliminate $(z_1, \dots, z_n, \bar{z}_1, \dots, \bar{z}_n)$ from equations (1. 2) and the equations

$$\frac{\partial z'_{x}}{\partial s_{I}} = \frac{\partial}{\partial s_{I}} \mathcal{P}_{x}(z,\bar{z};s,\bar{s}) \qquad (I=1,\cdots,r,\bar{1},\cdots,\bar{r}).$$

we obtain

(1. 3)
$$\frac{\partial z'_{X}}{\partial s_{I}} = \xi^{X}_{A}(z, \bar{z})A^{A}_{I}(s, \bar{s}) (A, I=1, \dots, r, \bar{1}, \dots, \bar{r})$$

If we apply the conditions of integrability of (1. 3), we obtain the equations

(1. 4)
$$\xi^{Y}_{A} \frac{\partial \xi^{X}}{\varepsilon z_{Y}} - \xi^{Y}_{B} \frac{\partial \xi^{X}}{\partial z_{Y}} = C_{AB}^{C} \xi^{X}_{C}$$

where

(1. 5)
$$C_{AB}^{c} = B_{A}^{I} B_{B}^{J} \left(\frac{\partial A^{c}_{I}}{\partial s_{I}} - \frac{\partial A^{c}_{J}}{\partial s_{I}} \right), \text{ where } A^{c}_{J} B_{B}^{J} = \delta_{B}^{c}$$

and z was used instead of z' ' for convenience.

If we assume that

$$g_{ab} = C_{ad} C_{eb}^{d} = 0$$
 $(a, b, \cdots = 1, \cdots, r)$ (conj.)

and put(*)

$$g_{a\bar{b}} = C_{a\bar{c}} C_{a\bar{b}} C_{a\bar{b}}$$

then, for a semi-simple group the rank of the matrix (g_{AB}) is 2n and, since the space is compact, the quadratic form $g_{a\bar{b}}u^a\bar{u}^b$ is positive definite. Thus, denoting by $(g^{a\bar{b}})$ the inverse of the matrix $(g_{b\bar{b}})$, we can use $g^{a\bar{b}}$ and $g_{b\bar{c}}$ for raising up and lowing down the indicies.

If we put

$$g^{\alpha \bar{B}} = \xi^{\alpha} {}_{a} \xi^{\bar{B}} {}_{\bar{b}} g^{a\bar{b}}$$

and

$$\xi_{\alpha}{}^{a} = g^{a\bar{b}}g_{\alpha\bar{a}}\xi^{\bar{a}}_{\bar{b}}$$

where $(g_{\alpha B})$ is the inverse matrix of $(g^{\alpha B})$, then we have

$$(1. 6) g_{\alpha\bar{B}} = \xi_{\alpha}{}^{a} \xi_{\bar{B}}{}^{\bar{b}} g_{a\bar{b}}, \xi^{\alpha}{}_{a} \xi_{\bar{B}}{}^{a} = \delta^{\alpha}_{\beta}$$

If r=n, we have $\xi^{\alpha}_{\ \alpha}\xi_{\alpha}^{\ b}=\delta^{b}_{\alpha}$,

but if $\gamma > n$, $\xi^{\alpha} {}_{a} \xi_{\alpha}{}^{b} + \delta^{b}_{a}$

We assume that the functions ξ^{x}_{A} are complex analytic in this section, i. e. ξ^{α}_{b} and $\xi^{\alpha}_{\bar{b}}$ are functions of z^{α} only, $\xi^{\bar{\alpha}}_{b}$ and $\xi^{\bar{\alpha}}_{\bar{b}}$ are functions of \bar{z}^{α} only, then we have

$$g^{\gamma\delta} \frac{\partial g^{\alpha\delta}}{\partial z_{\gamma}} - g^{\gamma\delta} \frac{\partial g^{\alpha\delta}}{\partial z_{\gamma}} = \xi^{\delta} \bar{\epsilon} \xi^{\delta} \bar{\epsilon} g^{c\delta} g^{c\delta} (\xi^{\gamma} - \frac{\partial \xi^{\alpha}}{\partial z_{\gamma}} - \xi^{\gamma} - \frac{\partial \xi^{\alpha}}{\partial z_{\gamma}})$$

but on the other hand from (1.4) we get

^(*) In this paper we assume the self-adjointness on the all indicies

$$\xi^{\beta}_{a} \frac{\partial \xi^{\alpha}_{b}}{\partial z_{\beta}} - \xi^{\beta}_{b} \frac{\partial \xi^{\alpha}_{a}}{\partial z_{\beta}} = C^{c}_{ab} \xi^{\alpha}_{c} + C^{c}_{ab} \xi^{\alpha}_{c}$$

$$\xi^{\beta}_{a} \frac{\partial \xi^{\alpha}_{b}}{\partial z_{\beta}} - \xi^{\beta}_{b} \frac{\partial \xi^{\alpha}_{a}}{\partial z_{\beta}} = C^{c}_{a\bar{b}} \xi^{\alpha}_{c} + C^{c}_{a\bar{b}} \xi^{\alpha}_{c}$$

$$\xi^{\beta}_{a} \frac{\partial \xi^{\alpha}_{b}}{\partial z_{\beta}} - \xi^{\beta}_{b} \frac{\partial \xi^{\alpha}_{a}}{\partial z_{\beta}} = C^{c}_{a\bar{b}} \xi^{\alpha}_{c} + C^{c}_{a\bar{b}} \xi^{\alpha}_{c}$$

therefore we obtain

$$g^{\alpha \bar{s}} \frac{\partial g^{\alpha \bar{s}}}{\partial z_{\tau}} - g^{\alpha \bar{s}} \frac{\partial g^{\alpha \bar{s}}}{\partial z_{\tau}} = \xi^{\bar{s}}_{\bar{e}} \xi^{\bar{s}}_{\bar{b}} g^{c\bar{e}} g^{a\bar{b}} (C_{ab}^{c} \xi^{\alpha}_{c} + C_{ab}^{c} \xi^{\alpha}_{\bar{e}})$$

and the following: [3]

THEOREM 1. 1 When r=n, a necessary and sufficient condition that (1. 6) is a Kaehlerian metric tensor is $C_{ab}^c = 0$ and $C_{ab}^r = 0$, and when r > n if $C_{ab}^c = 0$ and $C_{ab}^c = 0$ then the metric tensor (1. 6) is a Kaehlerian.

Under the Kaehlerian condition, the Christoffel symbols are given by

$$\Gamma_{\beta\gamma}^{\alpha} = \xi^{\alpha}_{a} \frac{\partial \xi_{\beta}^{a}}{\partial z_{\gamma}} = -\xi_{\beta}^{a} \frac{\partial \xi^{\alpha}_{a}}{\partial z_{\gamma}} \qquad when \ r = n$$

$$\Gamma_{\beta\gamma}^{\alpha} = \xi^{\alpha}_{a} \xi^{\bar{\epsilon}}_{c} \frac{\partial \xi_{\beta}^{b}}{\partial z_{\gamma}} \xi_{\bar{\epsilon}}^{\bar{e}} g^{a\bar{c}} g_{b\bar{e}} \qquad when \ r > n$$

We consider only the case of r=n in this section, we can easily see that

$$\xi^{\alpha}_{a:\gamma} = \frac{\partial \xi^{\alpha}_{a}}{\partial z_{\gamma}} + \xi^{\beta}_{a} \Gamma^{\alpha}_{\beta\gamma} = 0$$

and

$$\xi^{\alpha}_{a;\gamma;\chi} - \xi^{\alpha}_{a;\chi;\gamma} = \xi^{\beta}_{a} R^{\alpha}_{\beta\gamma\chi} = 0$$

where; indicates the covariant derivative w.r.t. $\Gamma_{\beta\gamma}^{\alpha}$ and $R_{\beta\gamma\bar{s}}^{\alpha}$ is the curvature tensor constructed by $\Gamma_{\beta\gamma}^{\alpha}$

Let $z^{\alpha} = z^{\alpha}(s)$ is a curve in V, and put

$$\frac{dz^{\alpha}}{ds} = e^{a} \xi^{\alpha}_{a}$$

where e^a are constants, then we can obtain [2]

$$\frac{d^2z^{\alpha}}{ds^2} + \Gamma_{\beta\gamma}^{\alpha} \frac{dz^{\beta}}{ds} \frac{dz^{\gamma}}{ds} = 0$$

and we shall call (1. 7) is the equation of geodesic. Hence we have the following:

THEOREM 1. 2 Under the assumption that ξ^{x}_{A} are complex analytic functions of z, and that r=n, if metric tensor (1. 6) satisfies the Kaehlerian condition then the following properties are satisfied.

- (i) ξ^{α} be parallel,
- (ii) V is a flat Kaehlerian manifold, $(R^{\alpha}_{\beta\gamma\bar{s}}=0)$
- (iii) Curve $z^{\alpha} = z^{\alpha}(s)$ whose tangential vector is $e^{\alpha} = e^{\alpha} = e^{\alpha}$ is geodesic, where e^{α} are constants.

If we define g_{ij} on M by the relations

$$(1.8) g_{ij} = \sum_{i} A^{c}_{i} A^{c}_{j}$$

and further assume that A^c_i also are complex analytic, i. e. A^c_i and A^c_i are functions of \bar{s}_i only, A^c_i and A^c_i are functions of \bar{s}_i only, then we obtain

$$\frac{\partial g_{i\bar{j}}}{\partial S_{k}} - \frac{\partial g_{k\bar{j}}}{\partial S_{i}} = A^{c}_{j} \left(\frac{\partial A^{c}_{i}}{\partial S_{k}} - \frac{\partial A^{c}_{k}}{\partial S_{i}} \right) \\
\frac{\partial g_{i\bar{j}}}{\partial \bar{S}_{k}} - \frac{\partial g_{i\bar{k}}}{\partial \bar{S}_{j}} = A^{c}_{i} \left(\frac{\partial A^{c}_{j}}{\partial \bar{S}_{k}} - \frac{\partial A^{c}_{k}}{\partial \bar{S}_{j}} \right)$$

and we have from (1. 5)

$$C_{ab}^{c} = B_{a}^{i} B_{b}^{j} \left(\frac{\partial A^{c}_{i}}{\partial S_{j}} - \frac{\partial A^{c}_{j}}{\partial S_{i}} \right) + B_{a}^{j} B_{b}^{j} \left(\frac{\partial A^{c}_{i}}{\partial \overline{S}_{j}} - \frac{\partial A^{c}_{i}}{\partial \overline{S}_{i}} \right)$$

$$C_{ab}^{\bar{c}} = B_a{}^i B_b{}^j \left(-\frac{\partial A_i^{\bar{c}}}{\partial S_j} - \frac{\partial A_j^{\bar{c}}}{\partial S_i} \right) + B_a{}^i B_b{}^i \left(-\frac{\partial A_j^{\bar{c}}}{\partial \bar{S}_j} - \frac{\partial A_j^{\bar{c}}}{\partial \bar{S}_i} \right)$$

therefore if $C_{ab}^c = C_{ab}^e = 0$ then the Kaehlerian condition is satisfied, and in this case we can easily see that there exist the functions $\mathcal{P}^c(s)$, $\psi^c(\bar{s})$ satisfying

$$g_{ij} = \sum_{c} \frac{\partial \varphi^{c}(s)}{\partial s_{i}} \frac{\partial \varphi^{c}(\bar{s})}{\bar{s}\partial_{j}}$$

Further-more by putting

$$g^{i} A^{c} = A_{c}$$
, $g^{k} A^{c} = A_{c}^{k}$

we have the following relations

$$g^{ij} = \sum_{c} A_{c}^{i} A_{c}^{j}$$

and

$$\Gamma_{jk}^{l} = g^{i\bar{\imath}} - \frac{\partial g_{\bar{\imath}j}}{\partial S_{k}} - = A_{a}^{i} - \frac{\partial A^{a}_{j}}{\partial S_{k}}$$

and

$$A^{c}_{j:k} = \frac{\partial A^{c}_{j}}{S_{k}} - A^{c}_{i} \Gamma^{i}_{jk} = 0$$

$$A^{c}_{j:k:\bar{k}} - A^{c}_{j:\bar{k}:\bar{k}} = -A^{c}_{i} R^{i}_{jk\bar{k}} = 0$$

where indicates the covariatant derivative w.r.t. Γ_{ik} and R_{iki} is the

curvature tensor constructed by 11%

Let $s^i = s^i(t)$ is a curve in M, and put

$$\frac{ds^{i}}{dt} = e^{a}A_{a}^{i}$$

then we can obtain

(1. 9)
$$\frac{d^2s^i}{dt^2} + \Gamma_{jk}^i - \frac{ds^i}{dt} - \frac{ds^k}{dt} = 0$$

and we shall call it is geodesic.

Therefore we may now conclude as follows:

THEOREM 1. 3 Under the assumption that A^c_I are complex analytic functions of s, if metric tensor (1.8) satisfies the Kaehlerian condition then the following properties are satisfied.

- (i) A' is a parallel gradient vector
- (ii M is a flat Kaehlerian manifold. $(R^i)_{ik\bar{i}} = 0$)
- iii) Curve $s^i = s^i(t)$ whose tangential vector is $e^a A_a^i$ is geodesic.
- (iv) Metric tensor of V which is defined by (1.6) also satisfies the Kaehlerian condition for all r such that $r \ge n$, therefore V holds all properties of Theorem 1.2.

2.

Take a compact semi-simple group space with Maurer-Cartan equations **

$$(2. 1) h^{\beta}_{b} \frac{\partial h^{\alpha}_{c}}{\partial z_{B}} - h^{\beta}_{c} \frac{\partial h^{\alpha}_{b}}{\partial z_{B}} = C_{bc}^{a} h^{\alpha}_{c}$$

where

(2. 2)
$$C_{bc}^{a} = A_{b}^{i} A_{c}^{j} \left(\frac{\partial A_{i}^{a}}{\partial S_{i}} - \frac{\partial A_{j}^{a}}{\partial S_{i}} \right), \quad \text{where} \quad A_{i}^{a} A_{a}^{j} = S_{i}^{j}$$

and

$$C_{ab}^{a} = -C_{ab}^{a}$$

$$C_{ab}^{e} C_{ae}^{f} + C_{bc}^{e} C_{ae}^{f} + C_{ca}^{e} C_{bc}^{f} = 0$$

Now, if we put

$$\frac{1}{2}(x_{\alpha}+\sqrt{-1}s_{\alpha})=z_{\alpha}, \quad \frac{1}{2}(x_{\alpha}-\sqrt{-1}s_{\alpha})=\bar{z}_{\alpha}$$

^{(**} In this section we assume that the all indicies take the values 1, 2, ..., n unless otherwise stated.

then

(2. 3)
$$x_{\alpha} = z_{\alpha} + \overline{z}_{\alpha}, \qquad s_{\alpha} = \frac{1}{\sqrt{-1}} (z_{\alpha} - \overline{z}_{\alpha})$$

and h^{α}_{a} and A^{a}_{i} are functions of z^{α} and \bar{z}^{α} , and

$$\frac{\partial h^{\alpha}_{a}}{\partial x_{\gamma}} = \frac{\partial h^{\alpha}_{a}}{\partial z_{\gamma}}, \qquad \frac{\partial A^{a}_{i}}{\partial s_{\gamma}} = \sqrt{-1} \frac{\partial A^{a}_{i}}{\partial z_{\gamma}}$$

Here we shall write α , β , γ , \cdots instead of i. j. k, \cdots and put

$$h^{\overline{\alpha}}_{a}(z,\overline{z}) = h^{\overline{\alpha}}_{\bar{a}}(z,\overline{z}), A^{\overline{\alpha}}_{\alpha}(z,\overline{z}) = A^{\overline{\alpha}}_{\bar{\alpha}}(z,\overline{z}), (\overline{\alpha},\overline{\alpha} = \overline{1}, \dots, \overline{n})$$

then

$$h_{A}^{X} = (h_{\alpha}^{\alpha}, 0, 0, h_{\bar{\alpha}}^{\bar{\alpha}}), A_{X}^{A} = (A_{\alpha}^{\alpha}, 0, 0, A_{\bar{\alpha}}^{\bar{\alpha}})$$

thus, we may obtain pure contravariant vector $h^{x}_{A}(A=1,\dots,n,\bar{1},\dots,\bar{n})$ and pure covariant vector $A^{A}_{x}(A=1,\dots,n,\bar{1},\dots,\bar{n})$, and we also get the following relations

$$\frac{\partial h^{\alpha}{}_{a}}{\partial \bar{z}_{\gamma}} = \frac{\partial h^{\alpha}{}_{a}}{\partial z_{\gamma}}, \qquad \frac{\partial h^{\bar{\alpha}}{}_{\bar{\alpha}}}{\partial z_{\gamma}} = \frac{\partial h^{\bar{\alpha}}{}_{\bar{\alpha}}}{\partial \bar{z}_{\gamma}}$$

$$\frac{\partial A^{a}{}_{\alpha}}{\partial \bar{z}_{\gamma}} = \frac{\partial A^{a}{}_{\alpha}}{\partial z_{\gamma}}, \qquad \frac{\partial A^{\bar{a}}{}_{\bar{\alpha}}}{\partial z_{\gamma}} = \frac{\partial A^{\bar{a}}{}_{\bar{\alpha}}}{\partial \bar{z}_{\gamma}}$$

From (2. 1) and (2. 2), we get

$$h^{\beta}_{b}(z,\bar{z}) \frac{\partial h^{\alpha}_{c}(z,\bar{z})}{\partial z_{\beta}} - h^{\beta}_{c}(z,\bar{z}) \frac{\partial h^{\alpha}_{b}(z,\bar{z})}{\partial z_{\beta}} = C^{a}_{b}h^{\alpha}_{a}(z,\bar{z}) (conj.)$$

$$C_{bc}^{a} = \sqrt{-1}A_{b}^{\beta}(z,\bar{z})A_{c}^{\gamma}(z,\bar{z})(\frac{\partial A_{\beta}^{a}z,\bar{z}}{\partial z_{\gamma}} - \frac{\partial A_{\gamma}^{a}(z,\bar{z})}{\partial z_{\beta}})(conj.)$$

(i) By putting

$$g_{bc} = -C_{be}^f C_{cf}^e$$

(2. 10)
$$b_{\beta\gamma} = h_{\beta}{}^{b} h_{\gamma}{}^{c} g_{bc}$$

where

$$h_{\mathsf{B}}{}^{b} = g^{b\,c}g_{\mathsf{B}\,\gamma}h^{\gamma}{}_{c}$$

we obtain

$$h^{\alpha}_{a}h_{B}^{a}=\delta^{\alpha}_{B}$$
 and $h^{\alpha}_{a}h_{\alpha}^{b}=\delta^{b}_{a}$

Further-more by putting

(2. 11)
$$\Omega_{\beta\gamma}^{\alpha} = \frac{1}{2} C_{bc}^{\alpha} h_{\beta}^{b} h_{\gamma}^{c} h_{\alpha}^{\alpha}$$

$$(2. 12) E^{\alpha}_{\beta\gamma} = h^{\alpha}_{a} - \frac{\partial h_{\beta}^{a}}{\partial z_{\gamma}}$$

we may obtain the following relations by the same way in [3] (pp. 90-92)

$$(b) \begin{Bmatrix} \alpha \\ \beta \gamma \end{Bmatrix} = \frac{1}{2} (E^{\alpha}_{\beta \gamma} + E^{\alpha}_{\gamma \beta})$$

$$\Omega_{\beta \gamma}{}^{\alpha} = \frac{1}{2} (E^{\alpha}_{\beta \gamma} - E^{\alpha}_{\gamma \beta})$$

$$(b) R^{\alpha}_{\beta \gamma \delta} = \Omega_{\gamma \delta}{}^{\rho} \Omega_{\rho \beta}{}^{\alpha}$$

$$(b) R_{\beta \gamma} = \frac{1}{4} b_{\beta \gamma}$$

where $(b)\{^{\alpha}_{\beta\gamma}\}$ are the Christoffel symbols which are calculate usually from $b_{\beta\gamma}$ and $(b)R^{\alpha}_{\beta\gamma\delta}$ is the curvature tensor calculated from $(b)\{^{\alpha}_{\beta\gamma}\}$.

(ii) If we put

$$(2. 20) a_{\beta\gamma} = A^b{}_{\beta} A^c{}_{\gamma} g_{bc}$$

instead of (2. 10) then by putting

(2. 21)
$$L^{\alpha}{}_{\beta\gamma} = A_{c}{}^{\alpha} \frac{\partial A^{c}{}_{\beta}}{\partial z_{\gamma}}$$
$$\phi_{\beta\gamma}{}^{\alpha} = \frac{1}{2} (L^{\alpha}{}_{\beta\gamma} - L^{\alpha}{}_{\gamma\beta})$$

we may obtain the following relations by the same way in [3] (pp. 90-92)

(2. 22)
$$(a) \{ {}^{\alpha}_{\beta\gamma} \} = \frac{1}{2} (L^{\alpha}_{\beta\gamma} + L^{\alpha}_{\gamma\beta})$$

$$(a) R^{\alpha}_{\beta\gamma\delta} = \phi_{\gamma\delta}{}^{\delta} \phi_{\delta\beta}{}^{\alpha}$$

$$(a) R_{\alpha\beta\gamma\delta} = -\phi_{\alpha\beta\delta} \phi_{\gamma\delta}{}^{\delta}$$

where $(a)\{_{\beta\gamma}^{\alpha}\}$ are the Christoffel symbols which are calculated ususly from $a_{\beta\gamma}$, and $(a)R^{\alpha}{}_{\beta\gamma\delta}$ is the curvature tensor calculated from $(a)\{_{\beta\gamma}^{\alpha}\}$, and

$$\phi_{\alpha\beta\sigma} = a_{\alpha\rho} \phi_{\beta\sigma}^{\ \rho}$$

Further-more from (2, 2), (2, 21) and the last of (2, 22) we may also obtain

$$(a) R_{\beta\gamma} = -\frac{1}{4} a_{\beta\gamma}$$

(iii) If we put

$$(2.30) g_{\alpha \bar{B}} = h_{\alpha}{}^{a} h_{\bar{B}}{}^{\bar{b}} g_{ab}$$

then we may obtain the follows by a straightforward calculation

$$g^{\alpha\bar{B}} = h^{\alpha}{}_{a}h^{\bar{B}}{}_{\bar{b}}g^{ab}$$

$$\frac{\partial g_{\alpha\bar{B}}}{\partial z_{\gamma}} = g_{\rho\bar{B}}E^{\rho}{}_{\alpha\gamma} + g_{\alpha\bar{\rho}}E^{\bar{\rho}}{}_{\bar{B}\gamma} \qquad (E^{\bar{\rho}}{}_{\bar{B}\gamma} = \bar{E}^{\rho}{}_{\beta\gamma})$$

and the Kaehlerian condition

$$\frac{\partial g_{\alpha\bar{B}}}{\partial z_{\gamma}} = \frac{\partial g_{\gamma\bar{B}}}{\partial z_{\alpha}}$$

is equivalent to

$$g_{\rho\bar{s}}\Omega_{\alpha\gamma}^{\rho}=g_{\bar{\rho}[\gamma}E^{\bar{\rho}}_{|\bar{s}|\alpha]}$$

where the right hand members indicate

$$g_{\bar{\rho}\gamma}E^{\bar{\rho}}_{\bar{R}\alpha}-g_{\bar{\rho}\alpha}E^{\bar{\rho}}_{\bar{R}\gamma}$$

If the above condition is satisfied then

$$\Gamma^{\alpha}_{\beta\gamma} = g^{\alpha \, \bar{\epsilon}} \, \frac{\partial g_{\beta \, \bar{\epsilon}}}{\partial z_{\gamma}} = E^{\alpha}_{\gamma \beta} + g^{\alpha \, \bar{\epsilon}} g_{\gamma \bar{\rho}} E^{\bar{\rho}}_{\bar{\epsilon} \beta}$$

and contracting by $\alpha = \gamma$ we get

$$\Gamma_{\alpha}^{\alpha} = E^{\alpha}_{\alpha\beta} + E^{\alpha}_{\alpha\beta}$$

then from (2. 4) and (2. 12)

$$R_{\beta\bar{\gamma}} = -\frac{\partial \Gamma_{\beta\alpha}^{\alpha}}{\partial \bar{z}} = -\left(\frac{\partial}{\partial z_{\gamma}} E^{\alpha}_{\alpha\beta} + \frac{\partial}{\partial z_{\gamma}} E^{\alpha}_{\alpha\beta}\right)$$

and we may now conclude as follows:

THEOREM 2 When we introduce the metric tensor (2.30) in our semi-simple group space endowed with complex coordinates $(z_{\alpha}, \bar{z}_{\alpha})$ by (2.3), if the Kaehlerian condition is satisfied then the Ricci tensor is real.

Oct. 1958

Mathematical Department,

Liberal Arts and Science College

Kyungpook University

REFERENCES

- [1] L. P. Eisenhart: Continuous groups of transformations, (1933).
- [2] N. Horie: On the group-space of continuous transfrom ation group with a Riemannian metric, Mem. of the Coll. of Sci. Kyoto Univ. Vol. xxx, No. 1 (1956).
- [3] K. Yano and S. Bochner: Curvature and Betti numbers, Ann. of Math. Studies No. 32 Princeton (1953).