UNIFORM TOPOLOGY ON A GROUP

Mi-Soo Pae by

Let V_{γ} be a neighbourhood of identity e in a topological group G, then

 $V_{\alpha}(p) = \{qp; q \in V_{\alpha}\}$ (1)

be a neighborhood of $p \in G$ as for uniform topology of G.

In §1, we shall introduce an uniform topology into an abstract group G directly by (1) regarding V_{α} as a subset of G and prove the uniform topology is discrete. This argument is performed in the similar way taking the following (2) instead of (1).

(2)
$$V_{\alpha}(p) = \{q; q = a^{-1}pa, a \in V_{\alpha}\}.$$

And we shall study the necessary and sufficient condition of the uniform topology by (1) to be non-discrete a na the sufficient condition of the uniform topology (2) to be non-discrete in $\S 2$, and finally the sufficient conditions that the group operations are continuous under the uniform topologies by (1) and (2) respectively in $\S 3$.

§ 1. Discrete uniform topology on a group G

For $a, x, y \in G$, we define $(x, y) \in G \times G$ such as

(3)
$$\exists a \in G; ax = y.$$

Let $\{V_{\alpha}\}$ be the system of all subsets which contain e. And we put

(4)
$$\Phi = \{U; U \subseteq G \times G, EU_{\alpha}; U_{\alpha} \subseteq U\}$$
where $U_{\alpha} = \{(x, y); ax = y, a \in V_{\alpha}\} = \{(x, y); V_{\alpha}\},$

then Φ be a filter of $G \times G$. Hence we have

THEOREM 1. Φ determines an uniform topology of group G. \mathbf{N} PROOF. a) Let $\Delta = \{(x, x); \{e\}\}, \text{ then } V_{\alpha} \text{ contains } e \text{ for arbitrary } V_{\alpha} \in \{V_{\alpha}\}, \}$ it means $U \in \Phi$ implies $U \supseteq \Delta$. b) If $(x, y) \in U_{\alpha} = \{(x, y); V_{\alpha}\}$, then

$$(y, x) \in U_{\alpha}^{-1} = \{(y, x) \colon V_{\alpha}^{-1}, \}$$

where $U_{\alpha}^{-1} = \{(y, x) \colon (x, y) \in U_{\alpha}\},$

•

Mi-Soo Pae

from $a^{-1}y = x$. Hence, for arbitrary $U \in \Phi$ there exists $U_{\alpha} \in \Phi$, such that $U_{\alpha} \in U$ by (4). From $U_{\alpha}^{-1} \in \Phi$ we obtain $U_{\alpha}^{-1} \subseteq U^{-1} \in \Phi$. c) For any $U \subseteq \Phi$ there exists

۲.

(5)
$$U_{\alpha} \subseteq U$$
 such that $U_{\alpha} = \{(x, y); V_{\alpha}\} \in \Phi$.

There exists

54

$$V_{\beta} \cdot V_{\beta} \subseteq V_{\alpha}; \ V_{\beta} \in \{V_{\alpha}\},$$

where $V_{\beta} \cdot V_{\beta} = \{ab, \ a \in V_{\beta}, \ b \in V_{\beta}\},$
from $ee = e \in V_{\alpha}$. We put $W = \{(x, y); \ V_{\beta}\},$ then
 $WW \subseteq U,$
where $WW = \{(x, y); \ \exists z \in G: \ (x, z) \in W, \ (z, y) \in W\},$
And the filter Φ introduces an uniform topology into group G.
By $\{e\} \in \{V_{\alpha}\}$ we obtain the following:

COROLLARY 1. Φ dertermines a discrete uniform topology in G.

On a topological group G a neighborhood V_{α} of e is a subgroup of G containing e. Then

COROLLARY 2. If a topological group G is discrete, then the uniform topology of G by (1) be equivalent to the uniform topology in theorem 1.

Now we consider the pair $(x, y) \in G \times G$ when and only when

(6)
$$\exists a \in G; a^{-1}xa = y.$$

Similarly as for (4), Φ determines a discrete uniform topology on a group G, in the same way above. We shall call

(7)
$$V_{\alpha}(x) = \{y; a^{-1}xa = y, a \in V_{\alpha}\}$$

a conjugate neighbourhood of $x \in G$.

REMARK. When we define (x, y) as xy=a, $a \in V_{\alpha}$, then U_{α} does not include Δ if V_{α} does not contain $\{x^2; x \in G\}$. And we put (x, y^{-1}) such as xy=a, $a \in V_{\alpha}$. Then, by $V_{\alpha}^{-1}=V_{\beta}$ containing e, this uniform topology be equivalent to the uniform topology in theorem 1.

§ 2. Non-discrete uniform topology on a group G

We shall introduce non-discrete uniform topology into a group. For this

Uniform Topology on a Group 55

purpose we suppose that G is T_1 -space and group. A neighbourhood of point x in a topological space is a subset which includes an open set containing point x. The totality of neighbourhoods of point x is called the fundamental system of neighbourhoods of point x, written by \mathcal{D}_x .

From corollary 2 of theorem 1, we get easily following:

THEOREM 2. The necessary and sufficient condition of the uniform topology G

by (1) to be non-discrete is the topological group G to be non-discrete. (Where G is T_1 -space.)

Now we consider the uniform topology by conjugate neighbourhoods.

LEMMA 1. If there is an uniform topology in a T_1 -space and at the same time group G by conjugate neighbourhoods (7), then for arbitrary $V_{\alpha} \in \mathscr{B}_e$ there exists some $V_{\beta} \in \mathscr{D}_e$ such that

(8)
$$V_{\beta}^{-1} \cdot V_{\beta} \subseteq V_{\alpha}$$
, where $V_{\beta}^{-1} = \{x^{-1}: x \in V_{\beta}\}$.
PROOF. Let

$$\begin{aligned} \{ V_{\alpha}(p); \ \alpha \in \Gamma \}, \\ \text{where } V_{\alpha}(p) = \{ q; \ q = a^{-1}pa, \ a \in V_{\alpha} \}, \\ V_{\alpha} \in \mathscr{B}_{e}, \end{aligned}$$

be a base of the fundamental system of conjugate neighbourhoods of $p \in G$ in the uniform topology. By the definition of the uniform topology, for arbitrary $\alpha \in \Gamma$ there exists some $\beta \in \Gamma$ such that

$$q \in V_{\alpha}(p)$$
 if $p \in V_{\beta}(r)$ and $a \in V_{\beta}(r)$ for any $r \in G$.
From $p \in V_{\beta}(r)$ and $q \in V_{\beta}(r)$, there exist $a, b \in V_{\beta}$ such that $p=a^{-1}ra$, $q=b^{-1}rb$ and $q=(a^{-1}b)^{-1}p(a^{-1}b) \in V_{\alpha}(p)$. Hence, $V_{\beta}^{-1} \cdot V_{\beta} \in V_{\alpha}$.

From now on in this paper, we assume that G is a T_1 -space as well as a topo logical group. Then G also satisfies the result of lemma 1.

THEOREM 3.

(A) For each $x_1, x_2 \in G$ $(x_1 \neq x_2)$ there is at least one system $\{V_x; x \in M\}$ of neighbourhoods of $e \in G$ such that

(9)
$$\bigcap_{x \in M} V_x = open set and V_x \neq x,$$

where $M = M(x_1, x_2) = \{a; x_2 = a^{-1}x_1a, a \in G\}.$

If G satisfies the condition (A), then G be an uniform space by conjugate neigh-

56

Mi-Soo Pae

bourhoods.

PROOF. a) Since V_{α} for any $\alpha \in \Gamma$ contains e, $V_{\alpha}(x)$ contains point x for arbitrary $x \in G$. b) From (A) there exists at least one $\{V_x\}$ satisfying (9). We put

 $\cap_{x \in M} V_x = V.$

Since V is open set with e, V is a neighbourhood of e. Hence there is an $\alpha \in \Gamma$

which $V_{\alpha} = V$. And $V_{\alpha}(x_1) \neq x_2$. For if $y = a^{-1}x_1a$ and $a \in V_{\alpha}$ since a does not belong to $M(x_1, x_2)$, then y is different from x_2 for any $a \in V_{\alpha}$. c) For arbitrary $\alpha, \beta \in \Gamma$ there exists some $\gamma \in \Gamma$ such that $V_{\gamma} \subseteq V_{\alpha} \cap V_{\beta}; V_{\alpha}, V_{\beta}, V_{\gamma} \in \mathcal{D}_{e}$. And we have $V_{\alpha}(x) \cap V_{\beta}(x) \supseteq V_{\gamma}(x)$ for arbitrary $x \in G$. d) For arbitrary $V_{\alpha} \in \mathcal{D}_{e}$ there exists V_{β} in \mathcal{D}_{e} , satisfying (8), because G is a topological group. And, if we put $p \in V_{\beta}(\gamma)$ and $q \in V_{\beta}(r)$ for arbitrary $r \in G$, then we get $q \in V_{\beta}(p)$ by similar way on lemma 1. Here $a^{-1}ea = e$ for any $a \in G$, and have $V_{\alpha}(e) = \{e\}$ for arbitrary $V_{\alpha} \in \mathcal{D}_{e}$ then

COROLLARY 1. The identity e of G is an isolate point the uniform topology in theorem 3.

COROLLARY 2. (A') There exists $V_{\alpha} \in \mathscr{B}_{e}$ such as $V_{\alpha} \cap M(x_{1}, x_{2})$ is finite set for each $x_{1}, x_{2} \in G$ $(x_{1} \neq x_{2})$. If G satisfies the (A'), G is an uniform space by conjugate neighbourhoods. PROOF. Let's put

$$V_{\alpha} \cap M(x_1, x_2) = \{a_1, a_2, \dots, a_n\}.$$

Then there are $V_i \in \mathscr{D}_e$ such that $V_i \neq a_i$ $(i=1, 2, \dots, n)$, for G is a T_1 -space and $a_i \neq e$ $(i=1, 2, \dots, n)$. There exists $V_{\beta} \in \mathscr{D}_e$ which $V_{\beta} \subseteq V_{\alpha} \cap (\bigcap_{i=1}^n V_i)$ because the V_{α} and V_i 's are the finite number of neighbourhoods of e. And we obtain $V_{\beta}(x_1) \neq x_2$.

LEMMA 2. If topological group G satisfies

(B) There exists $V_x \in \mathcal{D}_e$ that $V_x \cap N(x) = \{e\}$ for each $x \in G$, and,

(C) $\{e\} \notin \mathscr{D}_{e}$, i.e. *G* is non-discrete, then $N(x) = \{a; ax = xa, a \in G\} \notin \mathscr{D}_{e}$. PROOF. If it is not so, then there exists some $V_{\beta} \in \mathscr{D}_{e}$ such that $V_{\beta} \subseteq V_{\alpha}$ $\cap N(x)$ for any $V_{\alpha} \in \mathscr{D}_{e}$. From the condition (B), we obtain $\{e\} \in \mathscr{D}_{e}$ which is contrary to (C).

Uniform Topology on a Group 57

LEMMA 3. G satisfies either (A), (B) and (C), or (A'), (B) and (C), then there is no neighbourhood $V_{\alpha}(x)$ of x such that $V_{\alpha}(x) = \{x\}$ for each $x \in G$ ($x \neq e$).

PROOF. We suppose that there exists $V_{\alpha}(x)$ such that $V_{\alpha}(x) = \{x\}$. Since $\{e\}$ does not belong to \mathcal{D}_e from (C) there exists point a, not identity, which is contained to V_{α} . Since $a^{-1}xa = x$ for arbitrary $a \in V_{\alpha}$, then a belongs to N(x). So V_{α} be included in N(x). Since $V_{\alpha} \in \mathcal{D}_e$, N(x) belongs to \mathcal{D}_e . This is contrary to

lemma 2.

Hence we obtain following theorem:

THEOREM 4. G satisfies either (A), (B) and (C), or (A'), (B) and (C), then there exists a non-discrete uniform topology in G, and the identity e is only one isolate point in G.

§3. Uniform topological groups

In general mappings f(x, y) = xy and $\phi(x) = x^{-1}$ are not continuous n uniform topology of G which is introduced from G. And particularly we shall call G an uniform topological group when and only when

- (a) G is a group,
- (b) G is an uniform space,
- (c) f(x, y) = xy and $\phi(x) = x^{-1}$ are continuous mappings for the uniform topology

of G.

THEOREM 5. The sufficient condition that G is an uniform topological group in the sense of (D) is the following (D):

(D) For each $x \in G$ there exists at least one V_x such that

(10)
$$V_x \subseteq N(x), \ V_x \in \mathscr{B}_{e^*}$$

PROOF. There are V_{β} and V_{γ_1} in \mathscr{D}_e which $V_{\beta} \cdot V_{\gamma_1} \subseteq V_{\alpha}$ for and $V_{\alpha} \in \mathscr{D}_e$. While there is V_x satisfying (10) for each $x \in G$ from (D). And there is $V_x \in \mathscr{D}_e$ such that $V_{\gamma} \subseteq V_{\gamma_1} \cap V_x$. If xy = z, $x' \in V_{\beta}(x)$ and $y' \in V_{\gamma}(y)$, then x'y' = (ax)(by) = a(bx)y $\subset V_{\alpha}(z)$, that is $V_{\beta}(x) \cdot V_{\gamma}(y) \subseteq V_{\alpha}(z)$. Hence f(x, y) = xy is a continuous mapping from $G \times G$ to G. As V_x depends on x, so this mapping is not uniformly continuous. Now we shall prove $\phi(x) = x^{-1}$ is also continuous mapping. Let $V(x^{-1})$ be an arbitrary neighbourhood of x^{-1} . And there is some $\alpha \in \Gamma$ such that $V_{\alpha}(x^{-1}) = \{y; ax^{-1} = y, a \in V_{\alpha}\} \subseteq V(x^{-1})$. Furthermore there exists $V_{\beta_1} \in \mathscr{D}_e$ such that $V_{\beta}^{-1} \subseteq V_{\alpha}$ for

Mi-Soo Pae

any $V_{\alpha} \in \mathscr{D}$. From (D), we put $V_{\beta} \subseteq V_{\beta_1} \cap V_{\gamma}$, $V_{\beta} \in \mathscr{D}_e$, then $x'^{-1} = (ax)^{-1} = (xa)^{-1} = a^{-1}x^{-1} \in V_{\alpha}(x^{-1})$, $x' \in V_{\beta}(x)$. Hence we obtain $V_{\beta}(x)^{-1} \subseteq V_{\alpha}(x^{-1})$, where $V_{\beta}(x)^{-1} = \{y^{-1}; y \in V_{\beta}(x)\}$.

LEMMA 4. If G is the uniform space by conjugate neighbourhoods, then $\phi(x) = x^{-1}$ is continuous on G.

PROOF. We have easily $V_{\alpha}(x)^{-1} = V_{\alpha}(x^{-1})$ for each $x \in G$.

THEOREM 6.

58

(E) For each $x \in G$, there exist $U, V \in \mathcal{B}_e$ satisfying

(11) $U \cdot V \subseteq N(x)$.

If G satisfies (A) and (E), then G is an uniform topological group, by conjugate neighbourhoods.

PROOF. There exist $V_{\beta_1}, V_{\gamma_1} \in \mathscr{D}_e$ such that $V_{\beta_1} \cdot V_{\gamma_1} \subseteq V_{\alpha}$ for arbitrary $V_{\alpha} \in \mathscr{D}_e$. From (E), we obtain V_{β}, V_{γ} such that $V_{\beta} \subseteq V_{\beta_1} \cap U$, and $V_{\gamma} \subseteq V_{\gamma_1} \cap V$. Then $V_{\beta}(x) \cdot V_{\gamma}(y) \subseteq V_{\alpha}(z)$. By theorem 3 and lemma 4, G is an uniform topological group.

Finally, I express my hearty thanks to professor Chung-Ki Pahk in Kyungpook University for his kind guidance.

Sep. 20, 1957

Mathematical Department Liberal Arts and Science College Kyungpook University

:7

REFERENCES

[1] A. Weil; Sur les espaces a structure uniforme et sur la topologie generale, Actual Sci. Ind., Hermann. Paris, 1938.

[2] J, W. Tukey; Convergences and uniformity in topology, Princeton, 1940.

[3] A. Komatu; Topological spaces, lwanami, 1947.

[4] L. Pontrjagin; Topological groups, Princeton, 1946.