NOTES ON THE LATTICE ORDERED GROUPS

by Tae-Ho Choe

Introduction. A set L of the elements is called a lattice-ordered group, if L forms a group and lattice at the same time, and in L is order $x \ge y$, preserved under the multiplication:

 $x \ge y$ implies $xz \ge yz$ and $zx \ge zy$ for all z in L.

They have been discussed mainly by G. Birkhoff [1], and T. Nakayama [3], and they have already proved the followings:

- (1) A lattice-ordered group is a distributive lattice as a lattice
- (2) The order of any element of lattice-ordered group except for the identity is zero.
 - (3) There is no greatest and least elements in a lattice-ordered group etc.

In this paper, we shall consider the relation between an infinite cyclic group or, in general, a free abelian group and a lattice-ordered group in Theorem 1, 2, and 3, secondly under the interval topology [Definition 1] introduced to a lattice-ordered group L, L is always a discrete topological space or the topological space or the topological space which is composed only of the accumulating points of L in Theorem 4, and finally, prove that if there is no element in a lattice-ordered group which covers the identity then it can be a topological lattice-ordered group [Definition] 2 in Theorem 5.

We recollect some notations, which will be used in this paper.

- (A) The notations $A \cup B$, $A \cap B$ for the subsets A, B of lattice-ordered group L means that $\{a \cup b \mid a \in A, b \in B\}$, $\{a \cap b \mid a \in A, b \in B\}$ respectively.
- (B) The notations $A \lor B$, $A \land B$ means that set-union, set-intersection of A and B respectively.
 - (C) The notation $a \not\geq b$ means that the element b covers the element a.
- (D) The notation $a \sharp b$ means that the elements a, b are incomparable, i.e., neither $a \leq b$ nor b < a.

The other notations are the same in [2].

1. Free abelian groups and lattice-ordered groups

LEMMA 1. If for some element a of a lattice-ordered group L there exist the

element x_i ($i=1,2,\dots,n$) which $x_i \not \equiv a$ for any i and $y \geq x_i$ for some i and any element y such that y > a in L, then for arbitrary element b of L, we have $x_i a^{-1} b \not \equiv b$ for any i and $z \geq x_i a^{-1} b$ for some i and any element z such that z > b in L.

PROOF $x_i \not = a$ follows $x_i a^{-1} \not = e$, for, $x_i a^{-1} > p > e$ implies $x_i > pa > a$. And $x_i a^{-1} b \not = b$ for any i. Since z > b implies $z b^{-1} a > a$. there exists some x_i such that $z b^{-1} a \ge x_i$, i.e., $z \ge x_i a^{-1} b$, which completes the proof.

Accordingly, in particular, we have the result of Lemma 1 for b=e, the idenity of L, which will be used in the following Theorems.

THEOREM 1 If for some element a of a lattice-ordered group L there exists x which $x \not\ge a$ and $y \ge x$ for any y such that y > a in L, then L is a chain as a lattice and infinite cyclic group as a group, and vice versa.

PROOF. By Lemma 1, there exists the element p which $p \not\ge e$ and $y \ge px$ for any $x \in Z$ and any y such that y > x in L. We shall show now that L is a chain. If there exist the elements x, y that $x \not\equiv y$ in L, then $p(x \cap y) \not\ge x \cap y$, $x > x \cap y$ and $y > x \cap y$, hence $x \ge p(x \cap y)$ and $y \ge p(x \cap y)$. And $e \ge p$, which is contrary.

Next, we shall show that L is an infinite cyclic group. From $e \not \leq p$ it is clear $p^{-1} \not \leq (p^{-1})^2 = p^{-2}$, and hence we have

$$p^2 \stackrel{*}{>} p \stackrel{*}{>} e \stackrel{*}{>} p^{-1} \stackrel{*}{>} p^{-2}$$
.

Let x be an arbitrary element of L, then either $x \ge e$ or x < e. We shall consider the case of $x \ge e$, the another case x < e by the same way. It is easily seen that there existe the subchain $\{x_{\alpha}\}$ of L such that $e = x_{\alpha} \not \ge x_{\beta} \not \ge \cdots y_{\lambda} = x$, and that $\{x_{\alpha}\}$ is a well-ordered.

Suppose x_{α} is expressed by a integer power of p for any x_{α} such that $x_{\alpha} < x$ in L. Since $xp^{-1} < x$, we see $xp^{-1} = p^m$ for some integer m, i.e. $x = p^{m+1}$, hence, by induction, all elements of L are expressed by a integer power of p.

And order of any element except for the identity is zero [3].

Conversly, we can easily seen that given infinite cyclic group $L=\{g\}$ be a lattice-ordered group which satisfies the hypotheses of Theorem, if one defines $g^m \ge g^n$ to mean $m \ge n$ as integers.

Moreover, we have the following theorem.

THEOREM 2. If for the identity e of a lattice-ordered group L there exist the elements p, q of L such that $x \ge p$ or $x \ge q$ for any x > e in L and $p \not \le e, q \not \le e$, then L is a free abelian group with two generators p, q and in $Lp^m \cdot q^n \ge p^a \cdot q^b$ if and

only if $m \ge a$ and $n \ge b$ as integers, where $p \ge q$. And vice versa.

PROOF. p, q are commutative. In fact, from $e \not > p$, $e \not > q^{-1}pq$ we see $q^{-1}pq = p$ or $q^{-1}pq = q$. If $q^{-1}pq = q$ then p = q which is contrary, Hence $q^{-1}pq = p$.

We have $p^{-1} \not = e$, $q^{-1} \not = ep \not = p^2$ and $p \not = pq$ from $p \not = e$. Similarly $q \not = pq$, $p^{-1} \not = p^{-1}q$, $q^{-1} \not = pq^{-1}$ and $q^{-2} \not = q^{-1}$ etc. In general, $x = p^a q^b$ for arbitrary element x of L which $x \ge e$ where a, b are integers. In fact, there exists a sub-chain $\{x_\alpha\}$ of L such that

$$e=x_{\alpha} \stackrel{*}{\sim} x_{\beta} \stackrel{*}{\sim} \cdots \stackrel{*}{\sim} x_{\lambda}=x.$$

Since for an arbitrary element x_{λ} of $\{x_{\alpha}\}$ we can fined the elements x_{μ}, x_{σ} such that $x_{\mu} \not = x_{\nu}$ $x_{\lambda} \not= x_{\nu}$, respectively, and $\{x_{\alpha}\}$ is well-ordered.

Suppose x_{α} is expressed by the form $p^a p^b$ for any x_{α} such that $x_{\alpha} < x$ in $\{x_{\alpha}\}$. We get $xp^{-1} \in \{x_a\}$ or $xq^{-1} \in \{x_a\}$ because $xp^{-1} \not\equiv x$ and $xq^{-1} \not\equiv x$, and $xp^{-1} = p^m q^n$ or $xq^{-1} = p^m q^n$, hence $x = p^a q^b$.

Now, let y be arbitrary element of L, and we consider the element $y \cup e$, then we see $y \cup e = p^m q^n \ge y$ from $e \le y \cup e$ therefore $p^m q^n x^{-1} = p^s q^t$ for some integers s, t which follows $y = p^{m-s} q^{n-t}$.

Here we have $p^m \sharp q^n$ for every m, n > 0. In fact, if $p^m \ge q^n$ then $p^m \ge q$ since $q^n \ge q$, accordingly $p^m \ge p \cup q$, and from $p we get <math>p \cup q = pq$.

Hence it follows $p^{m-1} \ge q$. Here if m-1>1, by repeating this method, we have $p \ge q$, which is contrary, and $p^m \sharp q^n$.

Therefore, it is easily seen that $p^m q^n = e$ if and only if m = 0 and n = 0 and that $p^a q^b \le p^c q^d$ if and only if $a \ge c$ and $b \ge d$.

Conversely, on given free abelian group L with two generators p,q if one defines $p^a q^b \ge p^c q^d$ to mean $a \ge c$ and $b \ge d$, then L is a partly ordered set, and a lattice, since $p^m q^n > p^a q^b = p^m > a q^n > b$, where a, b, m and n are integers.

Moreover, it is easily seen that $x \ge y$ implies $xz \ge zy$ for all z.

And given a free abelian group L is a lattice-ordered group, which satisfies the hypotheses of Theorem because $p \not \ge e$, $q \not \ge e$.

We can easily extend above arguments general case by the method as was done in Theorem 2.

THEOREM 3. If for the identity e of a lattice-ordered group L there exist the elements x_i $(i=1,2,\dots,n)$ which $x_i \not\ge e$ for all i and $y \ge x_i$ for some i and any y such that y > e in L, then L is a free abelian group with n generators x_i $(i=1,2,\dots,n)$, and in L $x_1^{a_1}x_2^{a_2}\dots x_a^{a_s} \ge x_1^{b_1}x_2^{b_2}\dots x_n^{b_s}$, if and only if $ai \ge bi$ $(i=1,2,\dots,n)$. And vice versa.

2. Interval topology

Let us, first of all, introduce topological space to given lattice-ordered group L. We denote by (a], [a) and (a,b) the open intervals $\{x \in L \mid x < a\}$, $\{x \in L \mid x > a\}$ and $\{x \in L \mid a < x < b\}$ respectively.

DEFINITION 1. By the interval topology of a partly ordered set L (in fact, L is a lattice-ordered group), we mean that define by taking the open intervals (a), (a) and (a,b) as a subbase of open sets.

That is, the family of open intervals

$$S = \{ \bigwedge_{i} \bigvee_{\alpha} P_{i} \in \Phi \}, \text{ where } \Phi = \{(a), [a), (a,b) | a,b \in L \},$$

satisfies (1) $\bigvee_{\alpha} O_{\alpha} \in S$ for $O_{\alpha} \in S$,

- (2) $\bigwedge_{i} O_{i} \in S$ for $O_{i} \in S$,
- (3) $L \in S$,
- (4) Empty set $\phi \in S$,

where the suffix i runs on a finite set, and the suffix α on an arbitrary set. And let M be subset of L. By \overline{M} which $\overline{M} = (\bigvee_{\alpha} M_{\alpha})'$ where $M_{\alpha} \in S$ and $M_{\alpha} \in M^{*}$ (=the complement of M) we call closure of M.

We also see that if one defines open set O of L to mean $O'=\overline{O}'$ then the family of all open sets of L coincide with S.

And
$$S = \{ \bigwedge_{i} \bigvee_{\alpha} (x_{i}, y_{i}) |_{x_{i}}, y_{i} \in L \}$$

In fact, let y be an arbitrary element of (x), there exists no greatest element, we can find at least one element y_{α} or y_{β} in L such that $y < y_{\alpha}$ or $y # y_{\beta}$.

From
$$y < y \cup y_{\beta}$$
 we have $[x) \subset \bigvee_{x < y} (x, y_{\alpha})$, and $x) = \bigvee_{x < y} (x, y_{\alpha})$.

Similarly $(x] = \bigwedge_{x < y} (y_{\alpha}, x)$.

Let E be a subset of L. A point a is called an accumulating point of E, if $a \in \overline{E-a}$, we call a an isolated point of E, if it is not.

On the other hand, we can easily prove the followings.

LEMMA 2. If
$$A = \bigwedge_{\alpha} (x_{\alpha}, y_{\alpha})$$
, $B = \bigvee_{\alpha} (x_{\alpha}, y_{\alpha})$, then $Aa = \bigwedge_{\alpha} (x_{\alpha}a, y_{\alpha}a)$, $Ba = \bigvee_{\alpha} (x_{\alpha}a, y_{\alpha}a)$ for every $a \in L$ where $Aa = \{xa \mid x \in A\}$.

LEMMA 3. Let A and B be two subsets of L, then

$$(A-B)a=Aa-Ba$$
, $a(A-B)=aA-aB$ for every $a \in L$,

COROLLARY. Let A be a subset of L, then (Aa)'=A'a for every $a \in L$.

And we have also

LEMMA 4. Let A be a subset of L, then $Aa = \overline{A}a$ for every $a \in L$. PROOF. $\overline{A} = L - \bigvee B_{\alpha}$, for all $B_{\alpha} \in S$ and $B_{\alpha} \subset A'$.

By Lemma 2, 3, $\overline{A}a = L - \bigvee_{\alpha} (B_{\alpha}a)$.

While $\overline{A}a = L - \bigvee_{\beta} C_{\beta}$ for all $C_{\beta} \in S$ and $C_{\beta} \subset (Aa)'$, and it is sufficient to show that $\bigvee_{\alpha} (B_{\alpha}a) = \bigvee_{\alpha} C_{\beta}$.

Since $B_{\alpha} \subset A'$, we see that $B_{\alpha} a \subset A' a = (Aa)'$ by Corollary 1.

And since $B\alpha \in S$, $B_{\alpha} = \bigwedge_{i} \bigvee_{r} (x_{iy}, y_{iy})$ for some x_{iy} and $y_{iy} \in L$, and hence $B_{\alpha} \alpha = \bigwedge_{i} \bigvee_{r} (x_{iy}, y_{iy})$ $(x_{iy}a, y_{iy}a)$ by Lemma 2, 3.

Consequently, $B_{\alpha}a \in S$. Therefore, we obtain $B_{\alpha}a \subset \bigvee_{R} C_{\beta}$ for any α , i.e., $\vee (B_{\alpha}a)\subset \vee C_{\beta}$.

Conversely, $C_{\beta}a^{-1}\subset A'$ because $C_{\beta}\subset A'a$.

Here, by the same way above, we have $C_{\beta}a^{-1} \in S$.

Hence, we obtain $C_{\beta}a^{-1}\subset \bigvee_{\alpha}B_{\alpha}$ namely $C_{\beta}\subset \bigvee_{\alpha}(B_{\alpha}a)$ for any β , i.e., $\bigvee_{\beta}C_{\beta}$ $\subset V$ $(B_{\alpha}a)$, which completes the proof.

Now, we prove the following.

THEOREM 4. L is a lattice-ordered group in which interval topology is intro duced. If there is at least one isolated point of L, then L is descrete.

PROOF. Let α be an isolated point of L, then $a \in (L-\alpha)'$. It follows, by Lemma 4, 3,

$$e \in (\overline{L-a})' \ a^{-1} = (\overline{(L-a)}a^{-1})' = (\overline{(L-a)}a^{-1})' = (\overline{L-e})'$$

hence the identity e is isolated point of L.

Similarly, $x \in (L-x)'$ for every element x of L.

COROLLARY 2. A lattice-ordered group in which interval topology is introduced, is a descrete topological space or the topological space which is composed only of the accumulating points of L.

3. Topological lattice-ordered group

DEFINITION 2. A set L of elements is called a topological lattice-ordered group, if

- (1) L is a lattice-ordered group.
- (2) L is a topological space.
- (3) The lattice operations and group operations in L are continuous in the topo-

logical space.

And by a neighborhood of an element $p \in L$ is meant the subset including an open set $\ni p$.

Then, we have the following.

THEOREM 5 If there is no element x in a lattice-ordered group L such that $x \not\equiv e$, then L is a topological lattice-ordered group under it's interval topology.

PROOF. It is sufficient to show that the condition (3) of Definition 2 is satisfies in L.

For a neighborhood U(ab) of the element ab of L there exists an open set $O(ab) \in ab$ such that $O(ab) \subset U(ab)$, and

$$O(ab) = \bigwedge_{i \in \alpha} (x_{i\alpha}, y_{i\alpha}),$$

therefore $ab \in (x_{i\alpha}, y_{i\alpha})$ for some α and every i,

i.e.,
$$x_{i\alpha} < ab < y_{i\alpha}$$
.

On the other hand, there exist the elements $c_{i\alpha}$ and $d_{i\alpha}$ such that $x_{i\alpha} < c_{i\alpha}$ $< ab < d_{i\alpha} < y_{i\alpha}$.

For, if $x_{i\alpha} \stackrel{*}{\sim} ab$ then $(ab)x_{i\alpha}^{-1} \stackrel{*}{\sim} e$ which is contrary to the hypotuese of Theorem. If we consider the open intervals $U(a) = (x_{i\alpha}(a^{-1}c_{i\alpha})^{-1}, y_{i\alpha}(a^{-1}d_{i\alpha})^{-1})$ and $U(b) = (a^{-1}c_{i\alpha}, a^{-1}d_{i\alpha})$, then U(a), U(b) can be neighborhoods of the elements a and b respectively.

In fact, since $x_{i\alpha} < c_{i\alpha}$ and $d_{i\alpha} < y_{i\alpha}$, $x_{i\alpha}(a^{-1}c_{i\alpha})^{-1} > a$, and $a < y_{i\alpha}(a^{-1}d_{i\alpha})^{-1}$ hence $a \in U(a)$ and from $c_{i\alpha} < ab < d_{i\alpha}$, $b \in (a^{-1}c_{i\alpha}, d^{-1}d_{i\alpha})$. Moreover, let x and y be arbitrary elements of U(a) and U(b) respectively, then $xy \in (x_{i\alpha}, y_{i\alpha})$ by transitive law, and it follows $U(a)U(b) \subset U(ab)$, where $U(a) \cdot U(b) = \{xy \mid x \in U(a), y \in U(b)\}$. Now, for a neighborhood $U(x^{-1})$ of the element x^{-1} of L, we have open set $O(x^{-1}) = \bigwedge_{i = \alpha} \bigvee_{\alpha} (x_{i\alpha}, y_{i\alpha}) \ni x^{-1}$ such that $O(x^{-1}) \subset U(x^{-1})$. And $x^{-1} \in (x_{i\alpha}, y_{i\alpha})$ for some α and any i, therefore, $x \in (y_{i\alpha}^{-1}, x_{i\alpha}^{-1}) = U(x)$ which is also a neighborhood of the element x, finally $U^{-1}(x) \subset U(x^{-1})$, where $U^{-1}(x) = \{y^{-1} \mid y \in U(x)\}$. Hence, the group operations in L are continuous in the topological space L.

Finally, in order to show that the lattice operations in L are continuous, let $O(a \cup b) = \bigwedge_i \bigvee_{\alpha} (x_{i\alpha}, y_{i\alpha}) \ni a \cup b$ be a open subset of a neighborhood $U(a \cup b)$ of the element $a \cup b$ of L. And $a \cup b \in (x_{i\alpha}, y_{i\alpha})$ for some α and any i.

By the above method, we obtain that for the elements $x_{i\alpha}$, $y_{i\alpha}$, there exist the elements $c_{i\alpha}$ and $d_{i\alpha}$ of L such that

$$x_{i\alpha} < c_{i\alpha} < a \cup b < d_{i\alpha} < y_{i\alpha}$$

And if we consider the open intervals $U(a)=(c_{i\alpha}b^{-1}(a\cap b),\ d_{i\alpha})$, and $U(b)=(c_{i\alpha}a^{-1}(a\cup b),\ d_{i\alpha})$, then we also see that $U(a),\ U(b)$ can be neighborhoods of the elements a,b respectively. For, since $c_{i\alpha}< a\cup b$ implies $a^{-1}c_{i\alpha}\ b^{-1}< b^{-1}\cup a^{-1}=(a\cap b)^{-1},\ c_{i\alpha}b^{-1}(a\cap b)< a< d_{i\alpha}$, and $c_{i\alpha}a^{-1}(a\cap b)< b< d_{i\alpha}$.

Moreover, $U(a) \cup U(b \subset U(a \cup b))$, in fact, let x, y be the elements of U(a) and U(b) respectively, then

$$c_{i\alpha}b^{-1}(a\cap b)\cup c_{i\alpha}a^{-1}(a\cap b)\leq x\cup y\leq d_{i\alpha},$$

$$c_{i\alpha}(b^{-1}\cup a^{-1})(a\cap b)\leq x\cup y\leq d_{i\alpha},$$
i.e.,
$$c_{i\alpha}\leq x\cup y\leq d_{i\alpha},$$

and hence $x \cup y \in \bigwedge_{i} \bigvee_{\alpha} (x_{i\alpha}, y_{i\alpha}) \subset U(a \cup b)$.

Hence the lattice operations in L are continuous in the topological space L.

August 21, 1957, Graduate School, Kyungpook University

REFERENCES

- [1] G. Birkhoff; (1) Lattice-ordered groups, Amer. J. Math. 43 (1942).
- [2] G. Birkhoff; Lattice theory. Amer. Math. Soc. Collq. Publ. New York (1948).
- [3] T. Nakayama; (2) Note on the lattice-ordered groups. Acad. Japan 18 (1942).
- [4] T. Nakayama; Note on the distributivity of lattice-ordered group. Acad. Japan 18.