NOTES ON THE LATTICE ORDERED GROUPS

by Tae-Ho Choe

Introduction. A set L of the elements is called a lattice-ordered group, if L

forms a group and lattice at the same time, and in L is order x=y, preserved
under the multiplication:

x=y implies xz=yz and zx=zy for all z in L.

They have been discussed mainly by G. Birkhoff (1], and T. Nakayama (3],
and they have already proved the followings:

(1) A lattice-ordered group is a distributive lattice as a lattice

(2) The order of any element of lattice-ordered group except for the identity
1S zero.

(3) There is no greatest and least elements in a lattice-ordered group etc.

In this paper, we shall consider the relation between an infinite cyclic group
or, in general, a free abelian group and a lattice-ordered group in Theorem
1, 2, and 3, secondly under the interval topology [Definition 1] introduced to a
lattice-ordered group L, L is always a discrete topological space or the topological
space or the topological space which is composed only of the accumulating points
of L in Theorem 4, and finally, prove that if there is no element 1n a lattice-

ordered group which covers the identity then it can be a topological lattice-
ordered group [Definition] 2 in Theorem b.

We recollect some notations, which will be used in this paper.
(A) The notations AUB, AnB for the subsets A, B of lattice-ordered group L
means that {eublae ¢ A,b ¢ B}, {anbla ¢ A, b ¢ B} respectively.

(B) The notations AVB, AAB means that set-union, set-intersection of 4 and
B respectively.

(C) The notation ¢%b means that the element & covers the element a.

(D) The notation e¢#b means that the elements 4,5 are incomparable, i.e
neither ¢=b nor <.

The other notations are the same in [2],

-5

1. Free abelian groups and lattice-ordered groups

LEMMA 1. If for some element a of a lattice-ordered group L ithere exist the
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element x; (1=1,2, +++,m) which x;Xa for any i and y = x; for some i and any
element y such that y>a tn L, then for arbitrary element b of L, we have x,a7'b Xb
for any i and z=x,a"'b for some i and any element z such that z2>b in L.

PROOF x;%a follows x.a'%e, for, x,e'>p>e implies x,>pa>a. And x,q7'0 20D

for any ¢.Since z>b implies zb~'a>a. there cxists some x; such that zb7'e=x,
i.e., 2=x.4"'b, which completes the proof.

Accordingly, in particular, we have the result of Lemma 1 for b=e¢, the
idenity of L, which will be used in the following Theorems.

THEOREM 1 If for some element a of a lattice-ordered group L there exists x
which x%2a and y=x for any y such that y>a in L, then L is a chain as a lattice

and infinite cyclic group as a group, and vice versa.

PROOF. By Lemma 1, there exists the element p which pXe and y=px for
any x ¢ Z and any y such that y>x in L. We shall show now that L is a chain.
If there exist the elements x,y that x%y in L, then p(zny) £xny, x>xny and
y>xny, hence x=p(xny) and y=p(xny). And e=p, which is contrary.

Next, we shall show that L is an infinite cyclic group. From e%p it is

clear 71X (p~)%=p"% and hence we have

pPEpLeXpTrEpTE

Let x be an arbitrary element of L, then either x=e or x<e. We shall
consider the case of ¥x=e, the another case x<le by the same way. It is easily
seen that therc existe the subchain {x_,} of L such that e=x,2xg5 X, =1,
and that {x_,} 1s a well-ordered.

Suppose x,, 1s expressed by a integer power of p for any x, such that x_<x in
L. Since xp™'<x, we see xp~'=p" for some integer m, i.e. x=p""1, hence, by
induction, all elements of L are expressed by a integer power of p.

And order of any element except for the identity is zero [3].

Conversly, we can easily seen that given infinite cyclic group L={g} be a
lattice-ordered group which satisfies the hypotheses of Theorem, if one defines
g"=g" to mean m=n as integers.

Moreover, we have the following theorem.

THEOREM 2. If for the tdentity e of a lattice-ordered group L lhere exist the
¢lements p,q of L such that x=p or x=q for any x>e in L and pZe,qZe, then
L is a free abelian group with two generators p.q and in L p"-g"=p" ¢° if and
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only if m=a and n=b as integers, where p-<q. And vice versa.

PROOF. p,q are commutative. In fact, from eXxp, eXqg 'pg we see ¢ 'pg=p
r ¢g"'pg=q. lf ¢7'pg=4q then p=¢ which is contrary, Hence g 'pg=p.

We have p7! Xe, g ' XepLp®and pXpg from pg¥Xe, Similarly gXpg, p~1 £ p g,
g '£pg~t and g 2%47! etc. In general, x=p%° for arbitrary element x of L
which r=e¢ where @, b are integers. In fact, there exists a sub-chain {x,} of L such
that

Since for an arbitrary element x, of {x,} we can fined the elements x,, x,
such that r,%x, x,%x, respectively, and {x,} is well-ordered.

Suppose x, 1S expressed by the form pﬂpb for any x, such that x, <x in {x, 1

We get xp~' € {x,} or xg7! € {x,} because xp~'%:x and x¢~'2x, and xp~'=p"¢" or

_1_pmqn’ hence :__paqb

Now, let y be arbitrary eclement of L, and we consider the clement y U e, then
we see yUe=9" "=y from e=y U ¢ therefore p"q "y-l=p%" for some integers s,?
which follows y=p""5""".

Here we have p™# 4" for every m,n>0. In fact, if p"=4" then p”=q since
q"=q, accordingly p"=pUg, and from p<pUg=pg we get pg=pq.

Hence it follows ™ 1=gq. Here if m—1>1, by repeating this method, we have
p=q, which is contrary, and p"%4".

Therefore, it is easily scen that p™g"=e if and only if m=0 and =0 and
that p%°=p°¢° if and only if ¢=c and b=d.

Conversely, on given free abelian group L with two generators p,q 1if one
defines p%¢"=p°q 2 to mean a=c¢ and b=d, then L is a partly ordered set, and a
lattice, since p"g"<p°q’=p™ "Cq" 0

Moreover, it is easily seen that x=v implies xz=zy for all z

, where ¢, b, m and # are integers.

And given a free abelian group L is a lattice-ordered group, which satisfies

the hypotheses of Theorem because pXe, gXe.
We can ecasily extend above arguments general case by the method as was

done in Theorem 2.

THEOREM 3. If for the identity e of a lattice-ordered group L there exist the
elements x; (1=1,2, ----- , ) which x;%e for all 1 and y=x; for some i and any y
such that y>e in L, then L is a free abelian group with n generarors %, (1=1,2, -
o 1), and in L x," 5, %o Bz, M2, -----xﬂb-, if and only if aiz=bi(z=1,2, - :
n). And vice versa.
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2. Interval topology

Let us, first of all, introduce topological space to given lattice-ordered group
L. We denote by (], [¢) and (e, b) the open intervals {xe L|x <a}, {x ¢ L|x>a} and
{x ¢ Lla<x <b} respectivcely.

DEFINITION 1. By the interval topology of a partly ordered set L (in fact, L

s a lattice-ordered group), we mean that define by leking the open intervals (a),
(@) and (a,b) as a subbase of open seis.

That is, the family of open intervals

S={AVP; \pP;c D}, where 0={(a), [a], (&, b)]a, b ¢ L},

i a «
satisfies (1) VO, € S for O, ¢ S,
o
(2) NO; € S for O; € S,

3) L ¢S,

(4) Empty set ¢ ¢ S,
where the suffix 7 runs on a finite set, and the suffix « on an arbitrary set.
And let M be subset of L. By M which ﬂ:(\éMa)’ where M, ¢ Sand M, ¢ M*

(=the complement of M) we call closure of M.
We also see that if one defines open set O of L to mean O’=0’ then the

family of all open sets of L coincide with S.
And S={A V&, , .|, y, €L}
; o Ia, o Ia. I
In fact, let y be an arbitrary element of (x), there exists no greatest element,
we can find at least one element y, or Y3 in L such that y<y, or yEys.
From y<y U yg we have [2)C V, ., (*, ¥,), and )= V,., & ya ).
Similarly (x]= A,, a0 2.

Let £ be a subset of L. A point ¢ is called an accumulating point of E, if

¢ ¢ E—a, we call ¢ an isolated point of E, if it is not.
On the other hand, we can easily prove the followings.

LEMMA 2. If A=n(x,, VYo)» B=NV{(x,, v,), then Aa=, (x,a ,y,0), Ba
Y A 4 4 4
=\:(xacz, Y,2) Jor every a € L where Aa={xa|x € A}.
LEMMA 3. Let A and B be two subsets of L, then

(A—B)a=A4ea—Ba, a(A—-B)=aA—aB for every a € L,
COROLLARY. Let A be a subset of L, then (Aa)’=A’a for every a € L.
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And we have also

LEMMA 4. Let A be a subset of L, then Aa=Aa for every a ¢ L.
PROOF. A=L-VB,, for all B, € S and B,CA".
o

By Lemma 2, 38, Ae=L-V (B, a).

While Fl?Z=L-—VC"5 for aﬁ CzeSand C4C (Ae)’, and it is sufficient to show
that ;/(Ba,cz) =§C 8.

Since B,CA’, we see that B g C A’e=(Aa)’ by Corollary 1.

And since Ba € S, B, = /i\\?{(x"-"” y‘.y) for some Xy and ;€ L, and hence B, a= /I\\?{
(%52 9;,8) by Lemma 2, 3.

Consequently, B,z ¢S. Therefore, we obtain B,a C }/C g for any o, i.e,
\é(Baa)C\/Cﬁ.

Conversely, Cga'CA’ because C g C A’a.
Here, by the same way above, we have Cgza™' € S.

Hence, we obtain Cge™' C VB, namely Cz C V(B,@) for any B, i.e, chﬁ
4 4 '4 4

CV (B,a), which completes the proof.
4 4

Now, we prove the following.

THEOREM 4. L is a lattice-ordered group in which interval topology s intro
duced. If there ts at least one isolated point of L, then L is descrete.

PROOF. Let @ be an isolated point of L, then @ ¢ (L—a)’. It follows, by Lemma
4, 3,

e € (L—a) a'=(L-aa)'=(T—a)a ) =T—e)
hence the identity e is isolated point of L.

Similarly, x € (L—x)” for every element x of L.

COROLLARY 2. A lattice-ordered group in which interval topology is introduced,
is a descrete topological space or the topological space which is composed only of

the accumulating points of L.

3. Topological lattice-ordered group

DEFINITION 2. A set L of elements is called a topological lattice-ordered group,
Lf

(1) L is a lattice-ordered group.

(2) L is a topological space.

(3) The lattice operations and group operations in L are continuous in the topo-
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logical space.

And by a neighborhood of an element p € L is meant the subsel including an open
set 3 p.

Then, wc have the following.

THEOREM S If there is no element x in a lattice-ordered group L such that
xZXe, then L is a topological lattice-ordered group under it’s interval topology.

PROOF. It is sufficient to show that the condition (3) of Definition 2 is
satisfies in L.

For a neighborhood U(ab) of the element @b of L there exists an open set
O(ab) ¢ ab such that O(ab) C U(ab), and

O(ab) :/_\\é’(xga, Via)s
4
therefore ab ¢ (x;,, v;,) for some o and every ¢,

€., X;,<ab<y;,.

On the other hand, there exist the elements ¢;, and d;, such that zx;, <c;,
<ab<djy<Jju
For, if x;,Zab then (ab)x;,”'Ze which is contrary to the hypotuese of Theorem.

If we consider the open intervals U(e) = (x;,(a"'¢c; )", vi,(a™d;,)~") and U(b)
=(a"'¢;,, @ 'd;,), then U(a), U(b) can be neighborhoods of the elements ¢ and
b respectively.

In fact, since x;, <c;, and d;, < ¥;,, %; @7 '¢; )" > a,and a y;, (@ 'd;,)"" hence
e € Ulg) and from c¢;,<ab<d;, be(a’'¢;,, d~'d;,). Moreover, let x and y be arbi-
trary elements of U(a) and U(b) respectively, then xy e (x;,, ¥;,) by transitive
law, and it follows U(@)U (b)) CcU(ab), where U(a)-U(b)={xy|x € U(a),y ¢ U(D)}.
Now, for a neighborhood U(x™!) of the element x~! of L, we have open set
O(x™!) =§\ ;/(xz'a, ¥;0) 2 2t such that O(x~)CU(x~1). And x7 '€ (x;,, v;,) for some

« and any ¢, therefore, x ¢ (y;,7', %;,”') =U(x) which is also a neighborhood ot

the element x, finally U~'(x) cU(z™"), where U '(x) ={y7!|y e U(x)}. Hence, the

group operations in L are continuous in the topological space L.

Finally, in order to show that the lattice operations in L are continuous, let

O(aub) =N\ V (x5, ¥io) 2 @b be a open subset of a neighborhood U(aUb) of the
4 4 4

element ¢uUb of L. And aUb € (x;,, v;,) for some o and any ¢.
By the above method, we obtain that for the elements x;,, ¥;,, therc exist the
elements ¢;, and d;, of L such that
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xz'a <Cz'a' <an <dz'cx <J’z'a-

And if we consider the open intervals U(e) = (¢c;,07'(anb), d;,), and U(®b)
= (¢;,0"'(aVh), d;,), then we also see that U(e), U(b) can be neighborhoods of
the elements @, b respectively. For, since ¢;, <aLb implies ¢~'c;, o' <p~'ug™}
=(and)™, c¢;, b1 (anb) <a<d;,, and c;a (e Nnb) <b<d;,.

Moreover, U(@)VUU (b C U(aUb), in fact, let x,y be the elements of U(e) and U (b)
respectively, then

;071 (anb)Uc; o (enb) =xVy=d;,,

c;,(0~tVa 1) (anb) =xVy=d; ,

i- e- » CZ'aényE dz-:r!

and hence xUye AV (x;,. ¥;,)C UlaUb).
1 O

Hence the lattice operations in L are continuous in the topological space L.

August 21, 1957,
Graduate School,

Kyungpook University
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