NOTES ON KAEHLERIAN METRIC

By Séng-Seu-p- Eum

8§ 1. Introduction

In the complex n-dimensional (real 2x-dimensional) analytic space in the sense
of S. Bochner[1]™, the coordinates of a point P may be considered as (z%, z%).
where Greek indices take the values 1,2, -, n.

If we put

2% =,"=conj. of 3%,

and assume that barred Greek indices take the values 1,2, -, #, where d=n+¢r.
Let us assume that there is given a positive definite quadratic differential

form [3]
1. 1 ds*=g.,dz'd7", (J, k=1, 2, -, 2n)

where the symmetric tensor g, is self-adjoint [3] and satisfies

(1. 2) 9ap=9z3=0-
By virtue of condition (1, 2) the metric form (1.1) can be written in the form
1. 3) ds?=2g ,.dz"dz",
where
(1. 4) 9ap=98a=9a5=9a>

and a metric (1.3) satisfying (1.4) is called a Hermitian metric[3].
Taking account of

we obtain for the Christoffel symbols I’ jk the relations
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(*) Numbers in brackets refer to the references at the end of the paper.
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The condition

is called Kaehlerian condition, and this is equivalent to

agaﬁ agrﬁ
(L0 07 0%
or, further to
0? .
(1- 8) gaﬂ—azaaﬁi_’ﬁ ¥

where ¢ be a real valued function.

A metric satisfying (1.4) and (1.7) will be called a Kaehlerian metric. Thus,
in a Kaehlerian metric, we have

0g _ _ 0
a __ fIE_ E_._B__ L7 G 4 gEﬂ
(49 br=9 g Lor=9" G0
al's
" br
where Rj, was defined
oy, ary
R;'k!" ?J T —+T ;kr ;z‘" s}z :;k-

0z 0"

In the preseiit paper, we study on- the Kaehlerian metric.

At first, in section 2, we introduce orthogonal ennuple which is constructed
by T. Suguri in the [2], and we find the equivalent two conditions to the Kaeh-
lerian condition for the complex analytic ennuple, and a sufficient condition
to the Kaehlerian condition for the non-complex analytic ennuple. Next, in
section 3, we determine the constant holomorphic curvature space in the general

Fubini space, and in section 4, we have a necessary and sufficient condition
that the Kaehlerian space is a space of constant holomorphic curvature.
And in this paper we always assume the self-adjointness on the indices.
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§ 2. Orthogonal Ennuple

We can introduce the mutually orthogonal vectors 7,,“ such as

e e ———

2 1) 9ot 101" =00 |75, %1350, (9.9=1, -, n),

in the Hermitian space (see[2]).
From the self-adjointness of 77p|“,

gy

(2' 2) vq[ﬁ::anﬂzcanj' Of 7?.7|‘8:
then
2. 3 9 aglp "M, P =0, (P, g=1, -+, n).
If we solve the equations
(.2' 2 gaﬁnﬂla:nﬂlﬂ’ 9&'577PIB=77P|.¢-
then
(2. 5) 9:15:%77;::&?:&!5’ vaplapﬂrzag’ gaﬂ_—_zp,?manmg_

Here we envisage the following conditions in the Hermitian space.

(o) M," My alconj.) are complex analytic in z% (conj.)
(A) N, % 7, are parallel in the constructed metric.
(B) Kaehlerian condition.
(C) A transitive group of transformations whose infinitesimal opera-
tors are
of
X, f=n,°
ﬁ'f P 72"

is commutative.
 (I) At first we assune the condition (a).

[f the Kaehlerian condition (B) is satisfied then, by the covariant differen-
tiation, we get

(2. 6) Ny :8=9 Mpia:8=9" -
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P S aﬂplﬁ
77p|r:5—9r&77p| ;5—.9’.,& 52‘3 ’

where semicolons indicate the covariant derivatives,
Then we can easily see the following:

LEMMA If an orthogonal eunuple (2.1) satisfies (B), the conditions (o) and
(A) are equlvalent.

Under the assumption (), the Kaehlerian condition is equivalent to the curl
property |

anﬂia anﬂlﬁ

P

02" 02°

(1) If (A) is satisfied. then we have

2. D

(2. 8 nﬂlmr_npl‘r:azo’

and this is equivalent to the curl property (2.7), thus the condition (B) is.
satisfied, then

on,
_ P B _
Myl sy = Az — 1, gy =
From (1.9) and (2.5) we get
on, on,\ ¢
P B 4
3z7 —Wp) Ztntlr P =0.

Multiplying 7,” and summing up with respect to 7, we find

B8 aiﬁ'l{:lr —7 8 nqla
0zf " 97

=0,

thus the condition (C) is satisfied.

(i) If (B) is satisfied, multiplying (1.7) by ¢*°¢”" and snmming up with
respect to & and 7, we find

2. 9) gaﬁ' grﬁ ag o f — gaf}" grﬁ agﬂg g

0z gz

By using of the relation
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9 9'74:::_____ O‘E

to (2.9) and multiplying the result by gm and summing up with respect to S,
we have the condition

; 9g*° ¢ 0g%°
(2.10) re. =g7% - .
g 0z" d dz"
which is equivalent to (1.7).
By substituting (2.5) into this condition, we have

s (p 1p Py 7 T8 7, 5 0"
pp & _ p.
E;(ﬂqlrnﬂ (e )_E(nﬂrﬂﬂ ol )

Multiplying 7, ;%7 and summing up with respect to ¢ and 7, we find

X (4 4
r a"?sl . ¥ aﬁtl

- ozr ' gz

7?”

thus the condition (C) is satisfied |
In this case by the lemma we see that the condition (A) also is satisfied

(i) If (C) 1is satisfied, then, by puting
g = % Ny, "My

instead of (2.5), K. Yano and S. Bochner have proved that the conditions (A)
and (B) are satisfied ([3] pp. 134-135).

Hence we have the following

THEOREM 1. If an orthqgomzl ennuple (2.1) is complex analytic in the Herm:-
tian space, the conditions (A), (B) and (C) are equivalent.

If above complex analytic ennuple satisfies one among the conditions (A),
(B) and (C), then from the Ricci identity.

_n B
7P|a=r=5_nma;5=r‘“nﬂl Raﬁrﬁ'
we get easily
R%,5=0,

thus, our space is a flat Kaehlerian space [3].
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For the infinitesimal point transformation
(2.11) "z”:z“+72m“(z)5t,
the Lie derivatives of g,; and I';, are given as follows
CIap =M1 8T Mpl 1B
£F§7=7?p,“;5;r+ffgr577m5 .

Then we have the following:

COROLLARY .If an orthogonal ennuple (2.1) is complex analytic and satisfies (B),

then the infinitesimal point transformation (2.11) is a motion and an infinitesimal
affine collineation in the Kaehlerian space.

(I) We assume thatl the ennuple is not complx analytic, and in this case
we put (C’), instead of above (C), and the following (X).

(X) ”uﬁ’?suﬁzﬁsm’?rlﬁ-

(B) Kaehlerian condition,

on_ < on,.%
7 ﬁ g\ . 43 ﬂ‘
(C) nﬁ'l EB — g| 535 .

ap
Here we assume the condition (X), then multiplying (X) by - gg 5 and

summing up with respect to 8 and 0, we get, by (2.4)

372”“ B op anflﬁ ):7?”45( a7?;:';]""‘." o0 anslﬁ ),

(2.12) 1 P

and into this result we substitute (2.5), and multiplying this by WSFTZHI and
summing up with respect to s and £, we have

s oA ag“ry
9= e

thus, the Kaehlerian condition i1s satisfied. (2.10)
On the other hand, if we differentiate (X) with respect to z’, and multiplying

this derivative by ¢ and summing up with respect to @, and contracting by
x=7. we get
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on 8 ~ 0N\ 5 on A _ on. -
(2. 13) mla az;l }gap.,?slﬁ __ézgp,z sla' aﬁi:tl' _]_gapmlﬁ az;lp

From this by using the condition (X), we find

o a”slﬁ e a 5’7”5
_nsl

0z% 0z%*

77”

thus the condition (C’) is satisfied. |
For the complex analytic ennuple, we can easily see from (2.13) and theorem

1 that if (X) is assumed then (B) and (C”) are satisfied.

Hence we have

THEOREM 2. If ﬂz‘e‘ condz'tz'on' (X) is satisfied for the above orthogonal ennuple
(complex analytic or not), then the conditions (B) and (C’) are satisfied.

§ 3. General Fubinl space

For arbitrary real b, S, Bochner [1] put

3. D P= §~10g(1 : g a=f“2“): g logS,
then
0° 1 b
(3. 2) gaﬁ}azajzﬁ =5 Oap™ 55T 2t

thus a Kaehlerian metric is constructed.

From this we can calculate as follows

aé ag«‘?ﬁ O . sa. -
3. 3 Br=9" =55 @Iy +5,9p),
 b(n+1) _
(3. 4) %r__ 2S Z’B:
3. 5) Rpy=—a-(n+Dggs,

the last result is the theorem 8 in [1].
From (3.3) we get

3. 6) R 5= — 2 (0%9,5+0%95),
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p
CN0 Rogrs= 3‘(9.{:5975‘ + 905978 «

By using the expression of [3] we have

)

1
(3. 8 71?

and, by using the above

R
(3. 9) Rgy=—5 987 »
_ R

“thus, the Fubini space is a space of constant holomorphic curvature [11, [3].
Furthermore, from (3.9) ([3] pp.131)
R. =0,

' Y

"then

Raﬁré':lzo'

-thus, the Fubini space is a type of symmetric space.
More generally we put

(3.11) o=r(p). Pzézaza.
-and
0%, AN
(3.12) Juf= a_aa§ﬁ~—f (D)0 g+ 1" ()220,

-then from this we can calculate
(3.13) F§r=-§,—~[§ﬁ§f+2?ﬁ§] +9(D)z,2p52, ,

‘where dashes mean the derivatives with respect to p and

SO B =2 (P
G190 PD="F T B+ )]

then we have also

Rogrs=—1" [0 480 yo T 0 439 rﬁ]
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(3. 15) =3 i -}f(f 2 2"‘”&‘ [f,af)\ By + éraaﬁ] -

[0 405 +=L2 |2gl 0,54 2,0,

) , . 2f.rr , £ ANy i .
'—[99 S +0f ")+ J(f{f,)z(fﬁ———ﬂ)) ]zazﬁzrz&.

But on the other hand,
(3. 16) 9ag9yo+9as9rs=)2[0a8075+0050,4]
+1f " 25(250 5, +2,0,0) +242,0,5+ 2,005
+2(f ") 2:?“25:?725 .

If above general Fubini space whose metric tensor is defined by (3.12) is a
-space of constant holomorphic curvature, then relation

(3.17) R gr5=—0(Gap9,5+ G 5978
must be satisfied at all points of the space.

Furthermore (3.17) must be satisfied for all indices.
We consider for the point at least one of whose coordinates, say z2 (1=SA=n),
is zero, in this case, by putting a=8=y=0=4 we must hold

(3.18) S =0(f")°

at such point.
Therefore, we consider for the point all of whose coordinates are not zero.

At first, by considering the case all indices are distinct, we must hold

(3. 19) B(F") 2= (f +pf") _gﬂf:z%; )%

and equation (3.19) does not depend upon the indices, therefore we must hold
(8,19) at every such point of the space.

Next, by considering the case 7 is equal to d only, we must hold the following
similarly from (3.17) and (3.19)

(3. 20 of 17 =9(J"+p5") + —(J;:) .

Third, by considering the case « is equal to 8 only, we must hold the
following similarly from (3.17) and (3.19) -



26 Sang-Seup Eum

(3.21) e

Finally, from (8.17) and above three equations we must hold

(3.22) b(f)e=1".

Thus, we must hold above four equations simultaneously at every such point-
of the space.
But, (3.19), (3.20) and (3.21) are satisfied by (3.22).

Therefore the solution of above simultaneous equations i1s (3. 22).

Therefore we can easily see from (8.18) and (3.22) that if (3.17) 1s satisfied,.
then we must hold the following at every point of the space

(3.23) () =b(f"(p))2,
and this 1s equivalent to

Thus, if above general Fubini space is a space of constant holomorphic cur--
vature, then we must hold equation (8.24).

Conversely, if the condition (3.24) holds for above space, then equations.
(3.17) also hold from (3.15) and (3.16).

Hence we get the following conclusion by solving thc differential equation.
(3. 24).

THEOREM 3. General Fubini space whose melric is defined by (3.11) and

(3.12) s a space of constant holomorphic curvaiture if and any if the function
(3.11) is the form

¢=—i——~log(ap b +c¢

n
where pzzizaza, a(x0), b (x0) and c are integral constants.
0=

S 4. Constant holomorphic curvature space
S. Bochner introduced the tensor K a3 such as

1
B opra=Roprs— 510 (gaﬁRrﬁ"_gab‘Rrﬁ+gy5RaB+grﬁRa5)

\ R
F ST D D) IaBdrd T 9as9rp)
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in the Kaehlerian space ([3] pp. 162).
For the tensor equation K ,5,5=0 1s not the condition that the space is a

space of constant holomorphic curvature, let us introduce

1

D Noatrs=Rupro =55 12y GabRys+ 95aRrpt 9y5Rapt 9r8Ras)

R
2n(n+1) (n+2) ('935'97’54_9“59?’5) ‘

If we assume N ,z,5=0 then by contracting with g“a, we get
R

and substituting it in N,z =0, we obtain

R
(4. 3) Roz,5= IO (G039r5+ 90598

Conversely, for the space of constant holomorphic curvature, we have (4.2)

and (4.3), and hence evidently N ;z,5=0.
Hence we have the following conclusion.

THEOREM 4. A necessary end sufficient condition that the Kaehlerian space is
a space of constant holomorphic curvature, is that the tensor N .35 vanishes.

The theorem 8.24 in [3] as for Betti numbers can be utilized for the space

satisfying N ,z,5=0.

Sep. 30, 1957

Mathematical Department,
Liberal Arts and Science College,
Kyungpook University
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