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Abstract 

Detecting vulnerabilities in source code is essential for maintaining software security, but traditional methods 

like static and dynamic analysis often struggle with the complexity of modern software systems. Large Language 

Models (LLMs), such as GPT-4, have emerged as promising tools due to their ability to learn programming 

language patterns from extensive datasets. However, their application in vulnerability detection faces significant 

hurdles. This paper explores the key challenges limiting the effectiveness of LLMs in this domain, including 

limited understanding of code context, scarcity of high-quality training data, accuracy and reliability issues, 

constrained context windows, and lack of interpretability. We analyze how these factors impede the models' ability 

to detect complex vulnerabilities and discuss their implications for security-critical applications. To address these 

challenges, we propose several directions for improvement: developing specialized and diverse datasets, 

integrating LLMs with traditional static analysis tools, enhancing model architectures for better code 

comprehension, fostering collaboration between AI systems and human experts, and improving the interpretability 

of model outputs. By pursuing these strategies, we aim to enhance the capabilities of LLMs in vulnerability 

detection, contributing to the development of more secure and robust software systems. 

 

1. Introduction 

As software systems become increasingly integral to 

modern society, detecting and preventing vulnerabilities in 

source code has become critical. Software vulnerabilities can 

lead to malicious attacks, causing significant economic losses 

and posing severe security threats. Traditional vulnerability 

detection techniques, such as static and dynamic analysis, 

have been effective to some extent. However, the complexity 

and diversity of newly emerging vulnerabilities make it 

challenging for these methods to keep pace. The rise of 

sophisticated attack vectors necessitates advanced tools 

capable of deeper code understanding and analysis. 

Large Language Models (LLMs), like GPT-4, have shown 

remarkable capabilities in natural language processing, code 

generation, and code analysis. Trained on vast datasets 

containing both natural language and programming code, 

these models have learned patterns and structures inherent in 

programming languages. Their ability to generalize across 

tasks makes them promising tools for code understanding 

and analysis. However, applying LLMs to source code 

vulnerability detection remains in its infancy, and several 

challenges limit their effectiveness. 

This paper explores the challenges faced by LLMs in 

source code vulnerability detection, discusses their 

limitations, and proposes directions for improvement to 

enhance their performance in this critical area. 

 

2. Related Work 

LLMs have been applied to various code-related tasks, 

including code generation, completion, and summarization. 

Models like GPT-4 have demonstrated proficiency in 

generating syntactically correct code snippets and providing 

natural language explanations for code segments. These 

successes stem from training on extensive datasets 

containing both natural language and code, enabling them to 

learn programming language patterns. 

Traditional methods for source code vulnerability detection 

rely on rule-based systems and classical machine learning 

techniques. Static analysis tools use predefined rules to 

identify potential vulnerabilities but often produce numerous 

false positives and struggle with unknown vulnerability 

patterns. Dynamic analysis involves executing code to find 

vulnerabilities but is resource-intensive and may not cover all 

execution paths. 

Recent approaches have incorporated machine learning to 

improve detection capabilities. Techniques involving support 
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vector machines, decision trees, and neural networks are 

trained on labeled datasets to predict vulnerabilities. 

However, these methods often require extensive feature 

engineering and may not generalize well across different 

programming languages or vulnerability types. 

Li et al. [1] introduced VulDeePecker, a deep learning-

based system specifically designed for vulnerability detection. 

VulDeePecker employs bi-directional Long Short-Term 

Memory (LSTM) networks to learn from manually extracted 

code gadgets associated with vulnerabilities, focusing on 

domain-specific model design. While VulDeePecker 

demonstrated promising results in detecting vulnerabilities 

without extensive feature engineering, it has certain 

limitations. One significant limitation is that VulDeePecker 

primarily accommodates data flow analysis (i.e., data 

dependency) but does not incorporate control flow analysis 

(i.e., control dependency), potentially missing vulnerabilities 

that depend on the control structures within the code. This 

limitation suggests that, although deep learning approaches 

like VulDeePecker have advanced vulnerability detection, 

challenges remain in achieving comprehensive solutions. The 

need for models that can handle both data flow and control 

flow analyses underscores the importance of exploring more 

versatile approaches, such as LLMs, despite their own set of 

challenges, to enhance the effectiveness of automated 

vulnerability detection systems. 

Studies have attempted to apply LLMs directly to 

vulnerability detection. Zhang et al. [2] explored prompt-

enhanced vulnerability detection using ChatGPT, showing 

that while LLMs can identify some vulnerabilities, they often 

struggle with complex or context-dependent issues. Ullah et 

al. [3] provided a comprehensive evaluation, revealing that 

LLMs cannot reliably identify and reason about security 

vulnerabilities yet. Zhou et al. [4] discussed emerging results 

and future directions for LLMs in vulnerability detection, 

highlighting both the potential and limitations of current 

models. 

 

3. Challenges of LLMs in Vulnerability Detection 

One significant challenge is the limited understanding of 

code context. LLMs often lack deep comprehension of 

intricate relationships within codebases. Vulnerabilities 

frequently involve complex interactions across multiple 

functions or modules, requiring an understanding of data 

flows, control structures, and execution paths. LLMs 

typically analyze code at a syntactic level and may miss 

vulnerabilities that require semantic analysis and reasoning 

about program behavior. 

Data scarcity is another critical issue. Effective training of 

LLMs for vulnerability detection requires large, labeled 

datasets of vulnerable and secure code across various 

programming languages and vulnerability types. However, 

such datasets are scarce due to the sensitive nature of 

vulnerabilities and the substantial effort required for accurate 

labeling. Moreover, many existing vulnerability detection 

benchmarks suffer from data duplication problems, which 

can lead to overestimated model performance. Ding et al. [5] 

analyzed several popular datasets and found significant 

amounts of duplicated code between training and test sets, as 

shown in Table 1. This duplication allows models to 

memorize code snippets rather than learn to generalize, 

undermining the validity of evaluation results. Although 

datasets like PrimeVul have been introduced to address 

duplication issues, they are limited to C/C++ programs, 

leaving a gap in coverage for other programming languages. 

Consequently, the scarcity of high-quality, diverse, and 

duplication-free datasets limits the models' ability to learn 

diverse vulnerability patterns, hindering progress in this area. 

 

 

(Table 1) The statistics of data duplication in existing vulnerability 

detection benchmarks [5]. 

Accuracy and reliability problems hinder the adoption of 

LLMs in security-critical contexts. Models often capture 

superficial code structures without thoroughly analyzing 

execution behavior, leading to high false positive rates where 

safe code is incorrectly flagged as vulnerable, and false 

negatives where actual vulnerabilities are missed. Empirical 

studies by Ullah et al. [3] have shown that LLMs exhibit 

significant inconsistencies when applied to vulnerability 

detection. Their evaluation highlighted that LLMs not only 

struggle with correctly identifying vulnerabilities but also 

provide varying results upon repeated analyses of the same 

code snippets. As illustrated in Figure 1, the results 

demonstrate inconsistencies across different Common 

Weakness Enumeration (CWE) scenarios, even when using a 

recommended temperature setting of 0.2 for the LLM. This 

unreliability poses a substantial challenge for adopting LLMs 

in security-critical contexts where consistent and accurate 

detection is paramount. 

 

(Figure 1) Evaluation results for LLM output consistency. The table 

presents the number of correctly answered instances out of 10 

attempts for each CWE scenario and every prompt used in the study 

[3]. 

Vulnerability detection also requires specialized domain 

knowledge of programming language nuances, memory 
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management, and security principles. LLMs trained on 

general-purpose datasets may lack this expertise, making it 

challenging to identify vulnerabilities dependent on subtle 

language features or specific security concepts. 

Furthermore, LLMs have constrained context windows, 

limiting the amount of code they can process at once. Large 

codebases with complex interactions exceed these limits, 

preventing the model from understanding the overall 

program structure. The lack of interpretability is another 

limitation; LLMs function as black boxes, providing limited 

insights into their decision-making processes, making it 

difficult for security experts to trust and verify their outputs. 

 

 

4. Prospects and Directions for Improvement 

To enhance the effectiveness of LLMs in vulnerability 

detection, several strategies can be pursued. Building 

specialized datasets is crucial. Developing extensive, labeled 

datasets that cover a wide range of programming languages 

and vulnerability types can significantly improve model 

training. Collaborative efforts between industry and 

academia could facilitate the creation of such datasets. By 

including real-world examples with detailed annotations 

from security experts, LLMs can learn nuanced vulnerability 

patterns, enhancing their ability to detect complex security 

issues. Expanding datasets like Big-Vul could provide the 

diversity needed for better generalization. 

Integrating LLMs with traditional static analysis tools and 

program analysis techniques offers a promising avenue for 

enhancing vulnerability detection. Hybrid models can 

leverage the strengths of both approaches—using LLMs for 

pattern recognition and natural language processing while 

relying on static analysis for in-depth code examination and 

execution flow analysis. This combination can improve 

detection accuracy and reduce false positives, which remain 

significant issues for LLMs in vulnerability detection. Recent 

research by Zhang et al. [2] demonstrated that integrating 

structural information derived from program analysis 

techniques into prompt engineering can significantly enhance 

the effectiveness of LLMs. By crafting prompts that include 

elements like control flow graphs (CFGs), program 

dependence graphs (PDGs), and data flow graphs (DFGs), 

they observed improvements in detecting certain types of 

vulnerabilities. For instance, incorporating data flow 

information into the prompts helped the LLM focus on 

relevant variable interactions and data dependencies, leading 

to better identification of vulnerabilities. Figure 2 illustrates 

an example where data flow is included in the prompt to 

guide the LLM's analysis. This suggests that leveraging 

program analysis techniques within prompt engineering can 

be a practical approach to mitigate some limitations of LLMs 

without the need for extensive retraining. Combining such 

prompt-engineered LLMs with traditional program analysis 

methods could further enhance performance, indicating that 

deeper integration between these methods may yield even 

better results in vulnerability detection. 

Improving LLM architectures to better understand code 

execution flows is also vital. Incorporating mechanisms that 

allow models to reason about control structures, data 

dependencies, and program semantics could enhance their 

ability to detect complex vulnerabilities. Research into 

models that can process larger contexts or hierarchically 

analyze code could address limitations imposed by context 

size restrictions. For example, adapting transformer 

architectures to handle longer sequences or using hierarchical 

models may enable LLMs to capture broader program 

structures. 

 

 

(Figure 2) Example of a prompt incorporating data flow information 

to enhance LLM analysis [2]. 

Collaboration with human experts presents another key 

direction. Developing systems where LLMs assist security 

professionals can combine the efficiency of automation with 

expert judgment. LLMs can serve as initial filters, flagging 

potential vulnerabilities for further examination. This 

collaborative approach leverages the strengths of both 

humans and machines, potentially increasing the 

effectiveness and trustworthiness of vulnerability detection 

processes. Ullah et al. [3] emphasize the importance of 

human oversight, given that LLMs cannot yet reliably 

identify and reason about security vulnerabilities. 

Enhancing the interpretability of LLMs is essential for 

practical adoption. Techniques such as attention visualization, 

explainable AI methods, or integrating model outputs with 

human-readable explanations can help bridge the gap 

between model predictions and expert understanding. By 

providing insights into the reasoning behind their 

assessments, LLMs can build trust among security 

professionals and facilitate the identification of shortcomings 

in the models' understanding of code semantics. Zhou et al. 

[4] highlighted that current LLMs lack the necessary code 

semantic understanding, which hampers their effectiveness in 

vulnerability detection. Improving interpretability can 

directly address this issue by revealing how LLMs process 

and comprehend code structures and behaviors. With a 

clearer view of the models' internal workings, researchers 

can pinpoint areas where LLMs fail to capture critical code 

semantics and make informed enhancements to the model 

architectures, as suggested by Zhou et al. [4]. Additionally, 

they advocated for the creation of specialized datasets 
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enriched with domain-specific knowledge to train models 

more effectively. By combining enhanced interpretability 

with enriched training data, LLMs can be better equipped to 

understand complex code semantics, ultimately improving 

their vulnerability detection capabilities. 

Overall, addressing these areas can significantly improve 

the capabilities of LLMs in vulnerability detection, making 

them more reliable and effective tools in securing software 

systems. 

 

5. Conclusion 

Large Large Language Models hold significant potential 

as tools for source code analysis, including vulnerability 

detection. However, they currently face substantial 

challenges related to limited code understanding, data 

scarcity, accuracy issues, context limitations, and lack of 

interpretability. Addressing these challenges requires 

concerted efforts to improve model architectures, develop 

specialized datasets, integrate hybrid analysis approaches, 

and foster collaboration between AI systems and human 

experts. 

Future research should focus on these areas to enhance the 

capabilities of LLMs in vulnerability detection. By 

leveraging the strengths of LLMs while mitigating their 

limitations, we can contribute to more secure software 

systems and reduce the risks posed by software 

vulnerabilities. 
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