Acknowledgement
This work was partly supported by the BK21 FOUR Project, Korea government (MSIT), IITP, Korea, under the ICT Creative Consilience program (RS-2020-II201821, 50%), AI Innovation Hub (RS-2021-II212068, 25%), and AI Graduate School Program (Sungkyunkwan University, (RS-2019-II190421, 25%).
References
- Litjens, Geert, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I. Sanchez. "A survey on deep learning in medical image analysis." Medical image analysis 42 (2017): 60-88.
- Azizi, Shekoofeh, Basil Mustafa, Fiona Ryan, Zachary Beaver, Jan Freyberg, Jonathan Deaton, Aaron Loh et al. "Big self-supervised models advance medical image classification." In Proceedings of the IEEE/CVF international conference on computer vision, pp. 3478-3488. 2021.
- Dosovitskiy, Alexey. "An image is worth 16x16 words: Transformers for image recognition at scale."arXiv preprint arXiv:2010.11929 (2020).
- Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. "Learning transferable visual models from natural language supervision." In International conference on machine learning, pp. 8748-8763. PMLR, 2021.
- Yu, Jiahui, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. "Coca: Contrastive captioners are image-text foundation models." arXiv preprint arXiv:2205.01917 (2022).
- Fang, Yuxin, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. "Eva-02: A visual representation for neon genesis." Image and Vision Computing 149 (2024): 105171