Acknowledgement
이 논문은 2024년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임 (No.2021-0-02068, 인공지능 혁신 허브 연구 개발)
References
- Brown, Tom B. "Language models are few-shot learners."arXiv preprintar Xiv:2005.14165(2020).
- Bommasani, Rishi, et al. "On the opportunities and risks of foundation models."arXiv preprintar Xiv:2108.07258(2021).
- Bender, Emily M., et al. "On the dangers of stochastic parrots: Can language models be toobig?."Proceedings of the 2021 ACM conference on fairness, accountability, and transparency. 2021.
- Blodgett, Su Lin, et al. "Language(technology) is power: A critical survey of" bias" in nlp."arXiv preprint arXiv:2005.14050(2020).
- Zhao, Jieyu, et al. "Men also like shopping: Reducing gender bias amplification using corpus-level constraints."arXiv preprintar Xiv:1707.09457(2017).
- Mehrabi, Ninareh, et al. "A survey on bias and fairness in machine learning."ACM computing surveys (CSUR)54.6 (2021): 1-35.
- Sun, Tony, et al. "Mitigating gender bias in natural language processing: Literature review."arXiv preprint arXiv:1906.08976(2019).
- Caliskan, Aylin, Joanna J. Bryson, and Arvind Narayanan. "Semantics derived automatically from language corpora contain human-like biases."Science356.6334 (201 ): 183-186.
- Bolukbasi, Tolga, et al. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings."Advances in neural information processing systems29 (2016).
- May, Chandler, et al. "On measuring social biases in sentence encoders."arXiv preprint arXiv:1903.10561(2019).
- Ethayarajh, Kawin, David Duvenaud, and Graeme Hirst. "Understanding undesirable word embedding associations."arXiv preprint arXiv:1908.06361(2019).
- Rakivnenko, Vasyl, et al. "Bias in Text Embedding Models."arXiv preprint arXiv:2406.12138(2024).
- Dobrzeniecka, Alicja, and Rafal Urbaniak. "A Bayesian approach to uncertainty in word embedding bias estimation."Computational Linguistics(2024): 1-55.
- Rai, Rohit Raj, and Amit Awekar. "Effect of dimensionality change on the bias of word embeddings."Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD). 2024.
- Freestone, Matthew, and Shubhra Kanti Karmaker Santu. "Word Embeddings Revisited: Do LLMs Offer Something New?."arXiv preprint arXiv:2402.11094(2024).
- Zhao, Jieyu, et al. "Gender bias in coreference resolution: Evaluation and debiasing methods."arXiv preprint arXiv:1804.06876(2018).
- Kiritchenko, Svetlana, and Saif M. Mohammad. "Examining gender and race bias in two hundred sentiment analysis systems."arXivpreprint arXiv:1805.04508(2018).
- Nadeem, Moin, Anna Bethke, and Siva Reddy. "StereoSet: Measuring stereotypical bias in pretrained language models."arXiv preprint arXiv:2004.09456(2020).
- Nangia, Nikita, et al. "CrowS-pairs: A challenge dataset for measuring social biases in masked language models."arXiv preprintarXiv:2010.00133(2020).
- Gehman, Samuel, et al. "Realtoxicityprompts: Evaluating neural toxic degeneration in language models." arXiv preprint arXiv:2009.11462(2020).
- Dhamala, Jwala, et al. "Bold: Dataset and metrics for measuring biases in open-ended language generation." Proceedings of the 2021 ACM conference on fairness, accountability, and transparency. 2021.
- Wan, Yixin, et al. ""kelly is a warm person, joseph is a role model": Gender biases in llm-generated reference letters."arXiv preprint arXiv:2310.09219(2023).
- Kotek, Hadas, Rikker Dockum, and David Sun. "Gender bias and stereotypes in large language models." Proceedings of the ACM collective intelligence conference. 2023.
- Zhao, Jinman, et al. "Gender Bias in Large Language Models across Multiple Languages." arXiv preprint arXiv:2403.00277(2024).
- Rhue, Lauren, Sofie Goethals, and Arun Sundararajan. "Evaluating LLMs for Gender Disparities in Notable Persons." arXiv preprint arXiv:2403.09148(2024).
- Wang, Ze, et al. "JobFair: A Framework for Benchmarking Gender Hiring Bias in Large Language Models." arXiv preprint arXiv:2406.15484(2024).
- Wan, Yixin, and Kai-Wei Chang. "White Men Lead, Black Women Help: Uncovering Gender, Racial, and Intersectional Bias in Language Agency." arXiv preprint arXiv:2404.10508(2024).