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Abstract 
Software vulnerabilities impose a significant burden on developers, particularly in debugging and 

maintenance. Automated Software Vulnerability Repair has emerged as a promising solution to mitigate these 
challenges. Recent advances have introduced learning-based approaches that take vulnerable functions and their 
Common Weakness Enumeration (CWE) types as input and generate repaired functions as output. These 
approaches typically fine-tune large pre-trained language models to produce vulnerability patches, with 
performance evaluated using Exact Match (EM) and CodeBLEU metrics to assess similarity to ground-truth 
patches. However, current methods rely on teacher forcing during fine-tuning, where the model is trained with 
ground-truth inputs, but during inference, inputs are generated by the model itself, leading to exposure bias. 
Additionally, while models are trained using the cross-entropy loss function, they are evaluated using discrete, 
non-differentiable metrics, resulting in a mismatch between the training objective and the test objective. This 
mismatch can yield inconsistent results, as the model is not directly optimized to improve test-time performance 
metrics. To address these discrepancies, we propose the use of reinforcement learning (RL) to optimize patch 
generation. By directly using the CodeBLEU score as a reward signal during training, our approach encourages the 
generation of higher-quality patches that align more closely with evaluation metrics, thereby improving overall 
performance. 

 

1. Introduction 
In recent years, the rising number and complexity of 

software vulnerabilities have significantly increased the 
susceptibility of software systems to attacks. Traditional 
methods for addressing these vulnerabilities often rely 
heavily on the manual efforts of developers, which requires 
considerable time and resources for identifying and resolving 
security flaws. To mitigate the challenges associated with 
manual vulnerability resolution, Automated Vulnerability 
Repair (AVR) techniques have emerged as a promising 
solution for automatically detecting and fixing vulnerabilities. 
Typically, AVR methods follow three core stages: 
vulnerability localization, patch generation, and patch 
validation. Among these, the quality of the generated patches 
is critical, as it directly influences the overall success of the 
repair process. As a result, considerable attention has been 
devoted to developing AVR techniques that focus on 
producing more accurate and effective patches. 

As shown in table 1, rather than employing large language 
models (LLMs) with an extensive number of parameters, 
recent studies have demonstrated the effectiveness of fine-
tuned models in learning mappings from vulnerable code to 
repaired code [1]. Among the tunable models, CodeT5 have 
gained substantial popularity and achieved state-of-the-art 
performance in vulnerability patch generation [1][2].  

<Table 1> Model performance of LLMs. 



 
 

  

The state-of-the-art vulnerability patch generation 
models [1][2] are trained using teacher forcing, where the 
model generates sequences based on ground-truth inputs 
during training. However, this approach leads to exposure 
bias, as the model must rely on its own predictions during 
inference, which can cause errors to accumulate. Another key 
issue is the mismatch between the training objective and 
evaluation metrics. While models are trained using cross-
entropy loss, they are evaluated using non-differentiable 
metrics like Exact Match (EM) and CodeBLEU, creating 
inconsistency between what the model optimizes during 
training and how it is assessed at test time. These 
discrepancies can result in suboptimal performance and 
necessitate new approaches to better align training and 
evaluation. 

To address this mismatch, we propose a solution that 
incorporates evaluation measures during training. 
Specifically, we directly optimize the CodeT5 model for 
CodeBLEU metrics using reinforcement learning, which 
better aligns the model with its evaluation criteria and 
improves consistency between training and test-time 
performance. 
 
2. Preliminaries 

A. Automated Software Vulnerability Repair 

A Software vulnerability repair task involves identifying 
and fixing security vulnerabilities within software code. 
These vulnerabilities can vary in complexity, ranging from 
simple issues such as improper input validation or weak error 
handling to more critical problems like buffer overflows, 
SQL injection, and cross-site scripting (XSS) attacks. Such 
vulnerabilities, if left unaddressed, can expose software 
systems to malicious exploits, leading to significant security 
risks, including data breaches and unauthorized access. 

The repair process typically involves several key steps: 
analyzing the codebase to identify areas that are vulnerable, 
determining the underlying causes of the vulnerabilities, and 
applying appropriate fixes that mitigate these risks. In recent 
years, automated approaches have emerged as a promising 
solution to this problem, leveraging advanced computational 
models to generate patches for the identified vulnerabilities. 
These approaches often rely on large language models 
(LLMs), which are trained on vast datasets of code and are 
capable of suggesting and applying fixes for various security 
flaws with minimal human oversight, accelerating the 
process of securing software systems. 
 

B. Problems with Training Large Language Models 

Training large language models (LLMs) poses several 
challenges, particularly in sequence or patch generation tasks. 
One of the most widely used methods to train the decoder for 
these tasks is the teacher forcing algorithm. This approach 

minimizes the maximum-likelihood loss at each decoding 
step by training the model with the ground-truth sequence of 
tokens. Specifically, at each step, the model receives the 
actual previous token (rather than its own predicted token) as 
input to predict the next token in the sequence. While this 
method is effective during training, it introduces a significant 
limitation during inference. 

Another key problem with training LLMs for patch 
generation is the mismatch between training and evaluation 
objectives. During training, the model is optimized using a 
loss function such as cross-entropy loss, which focuses on 
token-level accuracy. However, at test time, the model is 
evaluated using discrete, non-differentiable metrics such as 
Exact Match (EM) and CodeBLEU. This discrepancy often 
leads to inconsistent performance, as the model is not 
directly trained to optimize these test-time metrics. 

To address this issue, we leverage reinforcement 
learning to optimize patch generation. Instead of relying 
solely on ground-truth inputs, the model is optimized through 
trial and error using a reward signal that reflects the quality 
of the generated output.  
 

C. Reinforcement Learning for Sequence Generation 

Reinforcement learning (RL) has demonstrated 
significant success in various sequence generation tasks [3], 
making it highly relevant to vulnerability patch generation. 
In these domains, RL approaches are employed to optimize 
models by exploiting signals from non-differentiable task-
specific metrics. For instance, earlier works have used the 
REINFORCE algorithm to directly optimize models for 
sequence-based evaluation metrics such as BLEU and 
ROUGE in translation tasks. By using RL, these models are 
able to bypass traditional loss functions and instead focus on 
improving performance based on the actual metrics used for 
evaluation, thereby achieving more consistent and robust 
results.  

We apply RL to the task of automated software 
vulnerability repair. In our approach, we use RL to directly 
optimize the model for CodeBLEU scores, which are more 
closely aligned with real-world evaluation metrics for patch 
generation.  

(Fig 1) Overview of Our Approach. 
 

3. Our Approach 
3.1 Vulnerability Patch Generation 

Automated Software Vulnerability Repair can be viewed 



 
 

  

as a vulnerability patch generation task of large language 
models. This task involves taking a vulnerable code sequence 
𝑋 as input and generating a corresponding patched code 
sequence to fix the identified vulnerabilities. 
During training, the model's parameters 𝜃 are learned by 
maximizing the likelihood of the ground-truth patch 
sequence The objective is to minimize the 
cross-entropy loss, which is formulated as: 

 

This loss function encourages the model to generate patched 
code sequences that closely match the ground-truth 
sequences based on the given input. 

3.2 Pretraining the LLM on Bugfix Corpus 

We utilize CodeT5 as the backbone model for our 
approach due to its widespread popularity and state-of-the-art 
performance in vulnerability patch generation tasks [1, 2]. To 
further enhance the model's effectiveness, we first pretrain it 
on a large bug-fix corpus before fine-tuning with a 
vulnerability-specific dataset. This pretraining step is 
informed by prior research [1, 4], which demonstrates that 
initializing models with a related repair corpus significantly 
improves their ability to generate accurate and effective 
patches for vulnerable code. This process is illustrated in (fig 
1), where the model is first pretrained with the bug-fix 
corpus, then fine-tuned using RL with the vulnerability 
corpus to refine its patch generation capabilities. This dual-
phase training approach helps the model better generalize to 
various types of vulnerabilities by leveraging learned 
patterns from previous bug fixes.  

 
3.3 Patch Generation as a RL Problem 

We propose to formulate patch generation as a RL 
problem and apply the REINFORCE algorithm to improve 
the performance of a pretrained model. We treat the model 
parameters θ as a stochastic policy that predicts the next 
token at each step in the sequence. After each prediction 
(action), the model updates its hidden state, which informs 
the policy’s decision for subsequent decoding steps. Upon 
completing the sequence, the generation of the patched code, 
the model receives a reward based on the CodeBLEU score 
of the generated patch. The objective of RL fine-tuning with 
the REINFORCE algorithm is to minimize the expected 
negative return, as described by the objective function: 

 
 
Following the REINFORCE algorithm, and policy 

gradient theorem [5], the gradient estimation is defined as: 
 

 

4. Evaluation 

4.1 Dataset 

We evaluated our method using the combined CVEFixes 
and Big-Vul datasets, also employed by state-of-the-art 
approaches VulMaster [1] and VulRepair [2]. The merged 
dataset includes 8,482 pairs of vulnerable C/C++ functions 
and their corresponding fixes, collected from 1,754 open-
source projects spanning 1999 to 2021. As in previous 
studies, the data is divided into training (70%), testing (20%), 
and validation (10%) subsets. 

 
4.2 Evaluation Metric 

In line with previous studies [1, 2], we use Exact Match 
(EM) and CodeBLEU as our evaluation metrics. EM 
measures the percentage of generated code that exactly 
matches the ground truth token sequence. CodeBLEU, a 
variant of the traditional BLEU score, is specifically 
designed for source code by incorporating code structure into 
the evaluation, offering a more nuanced assessment of code 
quality. 

 
4.3 Baseline 

We evaluate our approach against VulRepair and 
VulMaster. VulRepair, introduced by Fu et al. [2], is a T5-
based method for automated vulnerability repair, which 
improves upon the limitations of the previous model, 
VRepair [4], by enhancing the model's ability to learn token 
positions and generate novel tokens necessary for patching. 
VulRepair uses Byte-Pair Encoding for subword tokenization 
and leverages the T5 architecture to encode inputs and 
generate patches. The model is fine-tuned on a combined 
vulnerability repair dataset and generates patches during 
inference by applying its learned repair strategies. 

Zhou et al. [1] present VulMaster, a CodeT5-based 
approach for automatic vulnerability repair that is 
specifically designed to process entire vulnerable code 
segments, regardless of their length. VulMaster incorporates 
the Fusion-in-Decoder (FiD) framework to address the input 
length limitations inherent in transformer-based models. By 
utilizing multiple encoders, it efficiently handles long 
sequences of vulnerable code, enabling more effective repair 
of vulnerabilities. 

4.4 Results 

The evaluation results of our RL approach alongside the 
baseline models, VulRepair [2] and VulMaster [1], are 
presented in <Table 2, 3>. Performance is evaluated using 
two key metrics: Exact Match (EM) and CodeBLEU. It is 
important to note that our training method, which modifies 
the loss function, can be seamlessly applied to both 
VulMaster and VulRepair, potentially improving their 



 
 

  

performance as well. 
In Table 2, we observe that applying RL to VulRepair 

leads to a modest improvement in the Exact Match (EM) 
score, increasing from 18.05 to 19.29, while the CodeBLEU 
score remains unchanged at 0.5. Similarly, Table 3 shows 
that applying RL to VulMaster results in a slight increase in 
the EM score from 20.16 to 20.72, with the CodeBLEU score 
remaining steady at 0.53. These results suggest that while RL 
introduces minor improvements in token-level accuracy 
(EM), it has little to no effect on the structural quality of the 
generated patches as measured by CodeBLEU. 

 

 
<Table 2> Comparison of repair performance with VulRepair [2]. 

 

 
<Table 3> Comparison of repair performance with VulMaster [1]. 

 
5. Conclusion 

In this work, we explored the application of reinforcement 
learning to vulnerability patch generation with the goal of 
improving the repair capabilities of pretrained language 
models. While RL was intended to enhance the model’s 
ability to generate more accurate and effective patches by 
optimizing for CodeBLEU, our experiments revealed that the 
RL approach had only a marginal impact on performance. 
The improvements in repair capability were modest, 
suggesting that further refinement of the RL framework or 
additional techniques may be necessary to achieve 
substantial gains in this domain. Despite this, the study 
contributes valuable insights into the complexities of using 
RL for vulnerability patch generation and lays the 
groundwork for future research. 
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