Acknowledgement
본 연구는 2024년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원(RS-2022-00167197, 스마트시티 구축을 위한 지능형 5G/6G 핵심 인프라 기술 개발)과 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 지원을 받아 수행된 연구임(과제번호 : 1345356224).
References
- Zhao, Y., et al. "Network Anomaly Detection by Using a Time-Decay Closed Frequent Pattern," Information, Vol. 10, No. 8, 262, 2019.
- Al-Shabi et al. "Using deep learning to detecting abnormal behavior in internet of things", International Journal of Electrical and Computer Engineering, Vol. 12, No. 2, pp. 2108-2120, 2022.
- Abusitta, Adel, et al. "Deep learning-enabled anomaly detection for IoT systems", Internet ofThings, Vol. 21, 100656, 2023.
- Girish, L., and Rao, S.K. "Anomaly detection in cloud environment using artificial intelligence techniques", Computing, Vol. 105, No. 3, pp. 675-688, 2023.
- Saha, Sajal, et al. "Towards an optimal feature selection method for AI-based DDoS detection system.", 2022 IEEE 19th Annual Consumer Communications & Networking Conference, Virtual Conference, 2022, pp. 425-428.
- Akbar, K. Ashrafi, et al. "Advanced Persistent Threat Detection Using Data Provenance and Metric Learning.", IEEE Transactions on Dependable and Secure Computing, Vol. 20, No. 5, pp 3957-3969, 2022.