<u>ACK 2024학술발표대회 논문집 (31권 2호)</u>
알츠하이머병 예후 예측: MRI 및 메타데이터를
활용한 MMSE 점수 예측 모델 알츠하이머병 예후 예측: MRI 및 메타데이터를 드 예측: MRI 및 메<mark>E</mark>
MSE 점수 예측 모
, _{문소연², 송여경^{3,} 장지우³
!교 의과대학 의학과 학부생}

조채은¹, 문소연², 송여경^{3,} 장지우³ 1 고려대학교 의과대학 의학과 학부생 2 경성대학교 컴퓨터공학과 학부생 3 성신여자대학교 AI융합학부 학부생 조채은¹, 문소연², 송여경^{3,} 장지우³
¹고려대학교 의과대학 의학과 학부생
²경성대학교 컴퓨터공학과 학부생
³성신여자대학교 AI융합학부 학부생
chochaeeun@korea.ac.kr, opir0oui@gmail.com,
llengef0802@gmail.com, jangjang0022@naver.com $1\overline{u}$ 려대학교 의과대학 의학과 학부생
²경성대학교 컴퓨터공학과 학부생
³성신여자대학교 AI융합학부 학부생
chochaeeun@korea.ac.kr, opir0oui@gmail.com,
challengef0802@gmail.com, jangjang0022@naver.com 조채은¹, 문소연², 송여경^{3,} 장지우³
¹고려대학교 의과대학 의학과 학부생
²경성대학교 컴퓨터공학과 학부생
³성신여자대학교 AI융합학부 학부생
chochaeeun@korea.ac.kr, opir0oui@gmail.com,
challengef0802@gmail.com, jangjang0022@naver.com
Prognosis Prediction of Alzheime

$\begin{array}{c} ^1$ 고려대학교 의과대학 의학과 학부생
 2 경성대학교 컴퓨터공학과 학부생
 3 성식자대학교 AI융합학부 학부생

chochaeeun@korea.ac.kr, opir0oui@gmail.com,

challengef0802@gmail.com, jangjang0022@naver.com

Prognosis Prediction of Alzheimer's Disease:

Mul Metadata i-Horizon MMSE Prediction from MRI and
Metadata
Chaeeun Cho¹, Soyeon Moon², Yeogyeong Song³, Jiwoo Jang³
¹Dept. of Medicine. Korea University College of Medicine HOMET MINSE Prediction from MRI and
Metadata
naeeun Cho¹, Soyeon Moon², Yeogyeong Song³, Jiwoo Jang³
¹Dept. of Medicine, Korea University College of Medicine
²Dept. of Computer Engineering, Kyungsung University

Metadata

aeeun Cho¹, Soyeon Moon², Yeogyeong Song³, Jiwoo Jang³

Dept. of Medicine, Korea University College of Medicine

²Dept. of Computer Engineering, Kyungsung University

School of AI Convergence, Sungshi INCLACALA

haeeun Cho¹, Soyeon Moon², Yeogyeong Song³, Jiwoo Jang³

¹Dept. of Medicine, Korea University College of Medicine

²Dept. of Computer Engineering, Kyungsung University

³School of AI Convergence, S

Summary

²Dept. of Computer Engineering, Kyungsung University
³School of AI Convergence, Sungshin Women's University
Summary
This study aims to predict MMSE scores in Alzheimer's disease (AD) patients using a
NN-LSTM model that ³School of AI Convergence, Sungshin Women's University

Summary

This study aims to predict MMSE scores in Alzheimer's disease (AD) patients using a

CNN-LSTM model that processes MRI images and metadata. The OASIS-2 da Summary

Summary

Summary

Summary

Summary

CNN-LSTM model that processes MRI images and metadata. The OASIS-2 dataset was used,

with MRI slices (central, ±10mm, and ±15mm) and metadata. Two datasets were created: one

w Summary

Summary

CNN-LSTM model that processes MRI images and metadata. The OASIS-2 dataset was used,

with MRI slices (central, ±10mm, and ±15mm) and metadata. Two datasets were created: one

with central and ±10mm slice This study aims to predict M.
CNN-LSTM model that processes
with MRI slices (central, ±10mm,
with central and ±10mm slices (1
slices (combined dataset).
The CNN-LSTM model extractes This study aims to predict MMSE scores in Alizhelmer's disease (AD) patients using a

NN-LSTM model that processes MRI images and metadata. The OASIS-2 dataset was used,

with MRI slices (central, $\pm 10\text{mm}$, and ± 15 CNN-LSTM model that processes MRI images and metadata. The OASIS-2 dataset was used, with MRI slices (central, ± 10 mm, and ± 15 mm) and metadata. Two datasets were created: one with central and ± 10 mm slices (10mm

The CNN-LST
predict MMSE s
0.527 and MAE
MRI and metada
1. Introduction
41zheimer/s disease predict MMSE scores. The 10mm model outperformed the combined model, achieving an MSE of

0.527 and MAE of 0.509. This study highlights the potential of predicting MMSE scores using

MRI and metadata for early diagnosis of GG16 and combined them with metadata to
1 the combined model, achieving an MSE of
potential of predicting MMSE scores using
MRI, offering more accurate prognosis predictions
and supporting early interventions. Ultimately, with MRI shces (central, ±10mm, and ±15mm) and metadata. Two datasets were created one
with central and ±10mm slices (10mm dataset), and another with central, ±10mm, and ±15mm
slices (combined dataset).
The CNN-LSTM model With central and ±10mm slices (10mm dataset), and anot
slices (combined dataset).
The CNN-LSTM model extracted features using VGG16
predict MMSE scores. The 10mm model outperformed the
0.527 and MAE of 0.509. This study hi

MRI and metadata for early diagnosis of AD.
 1. Introduction MRI, offe

Alzheimer's disease (AD) is a neurodegenerative and support

disorder where early diagnosis is critical to approach

improving patient outcomes With 1. Introduction MRI, Maximum MRI, Alzheimer's disease (AD) is a neurodegenerative and states and states of the disorder where early diagnosis is critical to approach in approximation accurate programs are prediction is **1. Introduction**

Alzheimer's disease (AD) is a neurodegenerative and suppo

disorder where early diagnosis is critical to approach

improving patient outcomes. With an aging patient ou

population, accurate prognosis pre Alzheimer's disease (AD) is a neurodegenerative
disorder where early diagnosis is critical to
improving patient outcomes. With an aging
population, accurate prognosis prediction is
increasingly important for timely interve disorder where early diagnosis is critical to applies
improving patient outcomes. With an aging parapopulation, accurate prognosis prediction is
increasingly important for timely intervention. 2.
Current research focuses o mproving patient outcomes. With an aging patient
population, accurate prognosis prediction is
increasingly important for timely intervention. **2. N**
Current research focuses on MRI-based Th
diagnostics combined with metad propulation, accurate prognosis prediction is
increasingly important for timely intervention.
Current research focuses on MRI-based
diagnostics combined with metadata to improve
predictive accuracy[1].
The Mini-Mental Stat The Mini-Mental State Examination (MMSE) is

widely used tool for detecting comitive decline Current research focuses on MRI-based The
diagnostics combined with metadata to improve MMS
predictive accuracy[1]. from
The Mini-Mental State Examination (MMSE) is mode
a widely used tool for detecting cognitive decline,

diagnostics combined with metadata to improve MMS
predictive accuracy[1]. from
The Mini-Mental State Examination (MMSE) is mode
a widely used tool for detecting cognitive decline, featu
with studies showing that a drop in rrom
The Mini-Mental State Examination (MMSE) is mode
a widely used tool for detecting cognitive decline, feature
with studies showing that a drop in MMSE comb
scores often precedes frontal lobe atrophy, making time
it val The Mini-Mental State Examination (MM
a widely used tool for detecting cognitive
with studies showing that a drop in
scores often precedes frontal lobe atrophy, i
it valuable for diagnosing AD[2]. widely used tool for detecting cognitive decline, teature

with studies showing that a drop in MMSE combine

cores often precedes frontal lobe atrophy, making time-ser

valuable for diagnosing AD[2]. 2.1. Dat

This study a with studies showing that a drop in MMSE combine
scores often precedes frontal lobe atrophy, making time-se
it valuable for diagnosing AD[2]. **2.1. Da**
This study aims to develop a model that The C
forecasts MMSE scores at

scores often precedes frontal lobe atrophy, making
it waluable for diagnosing AD[2].
2.1. Data Collection and Preprocessing
This study aims to develop a model that The OASIS-2 dataset was used, and MRI slices
forecasts M it valuable for diagnosing AD[2]. **2.1. Data**

This study aims to develop a model that The OA

forecasts MMSE scores at the next clinical visit (central,

by combining metadata with multiple MRI slices. 256x256 j

Our mode

potential of predicting MMSE scores using
potential of predicting MMSE scores using
MRI, offering more accurate prognosis predictions
and supporting early interventions. Ultimately, this
approach sims to improve early diag MRI, offering more accurate prognosis predictions
and supporting early interventions. Ultimately, this
approach aims to improve early diagnosis and
patient outcomes in clinical practice MRI, offering more accurate prognosis predicand supporting early interventions. Ultimately approach aims to improve early diagnosis patient outcomes in clinical practice. Superoach aims to improve early diagnosis and patient outcomes in clinical practice.
 2. Method

The aim of this study is to predict future pproach aims to improve early diagnosis and
atient outcomes in clinical practice.
Nethod
The aim of this study is to predict future
MASE scores using MBI images and metadata

MMSE scores using MRI images and metadata **2. Method**
The aim of this study is to predict future
MMSE scores using MRI images and metadata
from previous clinical visits. A CNN-LSTM
model was developed with VGG16 used for **2. Method**

The aim of this study is to predict future

MMSE scores using MRI images and metadata

from previous clinical visits. A CNN-LSTM

model was developed, with VGG16 used for

feature extraction from MRI images an The aim of this study is to predict future
MMSE scores using MRI images and metadata
from previous clinical visits. A CNN-LSTM
model was developed, with VGG16 used for
feature extraction from MRI images, and the
combined f MMSE scores using MRI images and metadata
from previous clinical visits. A CNN-LSTM
model was developed, with VGG16 used for
feature extraction from MRI images, and the
combined features and metadata processed in a
time-se model was developed, with VGG16 used for
feature extraction from MRI images, and the
combined features and metadata processed in a feature extraction from MRI images, and the eature extraction from MRI images, and the
ombined features and metadata processed in a
ime-series structure to predict MMSE scores.
.1. Data Collection and Preprocessing
The OASIS-2 dataset was used, and MRI slices
cent

combined features and metadata processed in a
time-series structure to predict MMSE scores.
2.1. Data Collection and Preprocessing
The OASIS-2 dataset was used, and MRI slices
(central, ±10mm, and ±15mm) were resized to
25 time-series structure to predict MMSE scores.
 2.1. Data Collection and Preprocessing

The OASIS-2 dataset was used, and MRI slices

(central, ±10mm, and ±15mm) were resized to

256x256 pixels and converted into RGB for 2.1. Data Collection and Preprocessing
The OASIS-2 dataset was used, and MRI slices
(central, ± 10 mm, and ± 15 mm) were resized to
256x256 pixels and converted into RGB for CNN
input. Two datasets were created: one c

 $\frac{\text{ACK 2024}}{\text{ACK 2024}} \pm \frac{\text{E}}{\text{E}}$ (3)
the central slice and slices from the ± 10 mm ± 10 mm
range(10mm dataset) and another including slices MSE of $\frac{\text{ACK 2024}}{\text{X2024}} = \frac{\text{ACK 2024}}{\text{X2024}} = \frac{\text{ACK 2024}}{\text{X2024}} = \frac{\text{L}}{\text{E}}$

the central slice and slices from the $\pm 10\text{mm}}$ $\pm 10\text{mm}$ $\pm 10\text{mm}$ $\pm 10\text{mm}$ $\pm 10\text{mm}$ $\pm 15\text{mm}$ $\pm 10\text{mm}$ $\pm 15\text{mm$ the central slice and slices from the ±10mm ±10m

range(10mm dataset), and another including slices MSE

from both the ±10mm and ±15mm ranges The

(combined dataset) Metadata including age sex most the central slice and slices from the ± 10 mm ± 10 mm range(10mm dataset), and another including slices MSE of from both the ± 10 mm and ± 15 mm ranges The 1(combined dataset). Metadata, including age, sex, most r the central slice and slices from the ± 10 mm ± 10 mm range(10mm dataset), and another including slices MSE of from both the ± 10 mm and ± 15 mm ranges The 10 (combined dataset). Metadata, including age, sex, most range(10mm dataset), and another including slices MSE
from both the ± 10 mm and ± 15 mm ranges The
(combined dataset). Metadata, including age, sex, most
education level, SES, and CDR scores, was scores
normalized an from both the ± 10 mm and ± 15 mm ranges
(combined dataset). Metadata, including age, sex,
education level, SES, and CDR scores, was
normalized and matched with MRI for each visit.
2.2. Model Architecture
The CNN-LS combined dataset). Metadata, including age, sex, most r
ducation level, SES, and CDR scores, was scores.
ormalized and matched with MRI for each visit. errors,
2. Model Architecture
The CNN-LSTM model processed both MRI

education level, SES, and CDR scores, was scored and matched with MRI for each visit. er
 2.2. Model Architecture

The CNN-LSTM model processed both MRI

images and metadata for MMSE score prediction. normalized and matched with MRI for each visit. errors,

2.2. Model Architecture

The CNN-LSTM model processed both MRI

images and metadata for MMSE score prediction.

Features from MRI images were extracted using

a pret 2.2. Model Architecture

The CNN-LSTM model processed both MRI

images and metadata for MMSE score prediction.

Features from MRI images were extracted using

a pretrained VGG16 model with imagenet weights,

where the top The CNN-LSTM model processed both MRI

images and metadata for MMSE score prediction.

Features from MRI images were extracted using

a pretrained VGG16 model with imagenet weights,

where the top classification layers wer mages and metadata for MMSE score prediction.

Features from MRI images were extracted using

a pretrained VGG16 model with imagenet weights,

where the top classification layers were removed,

and a Flatten layer was add Features from MRI images were extracted using

a pretrained VGG16 model with imagenet weights,

where the top classification layers were removed,

and a Flatten layer was added to convert the

features into 1-dimensional v a pretrained VGG16 model with imagenet weights,
where the top classification layers were removed,
and a Flatten layer was added to convert the
features into 1-dimensional vectors. These
features were passed through a Time where the top classification layers were removed,

and a Flatten layer was added to convert the

features into 1-dimensional vectors. These

features were passed through a Time Distributed

layer to handle the sequential n Features into 1-dimensional vectors. These

features were passed through a Time Distributed

layer to handle the sequential nature of the data.

Metadata, including age, sex, and CDR scores,

was processed in parallel and reatures into 1-dimensional vectors. These
features were passed through a Time Distributed
layer to handle the sequential nature of the data.
Metadata, including age, sex, and CDR scores,
was processed in parallel and comb teatures were passed through a Time Distributed

layer to handle the sequential nature of the data.

Metadata, including age, sex, and CDR scores,

was processed in parallel and combined with the

image features through a Expect to handle the sequential nature of the data.

Metadata, including age, sex, and CDR scores,

was processed in parallel and combined with the

image features through a Concatenate layer. The

combined data was then p Metadata, including age, sex, and CDR scores,
was processed in parallel and combined with the
image features through a Concatenate layer. The
combined data was then passed to an LSTM
layer with 50 units, using the ReLU act was processed in parallel and combined with the

image features through a Concatenate layer. The

combined data was then passed to an LSTM

layer with 50 units, using the ReLU activation

function to capture temporal depen Final prediction layer, with a single neuron,

final prediction layer, with a single neuron,

final prediction layer, with a single neuron,

final prediction layer, with a single neuron,
 $\frac{1}{2}$ in specific areas, perfo combined data was then passed to an LSTM
layer with 50 units, using the ReLU activation
function to capture temporal dependencies. The
final prediction layer, with a single neuron,
employed a linear activation function to layer with 50 units, using the H
function to capture temporal dep
final prediction layer, with a
employed a linear activation functic
predicted MMSE score.
2.3 Model Training and Evaluat tunction to capture temporal dependencies.

final prediction layer, with a single neu

employed a linear activation function to output

predicted MMSE score.
 2.3. Model Training and Evaluation

The model was trained usi mal prediction layer, with a single neuron, in spec
mployed a linear activation function to output the patient
redicted MMSE score.
3. Model Training and Evaluation the patient
The model was trained using the Adam consis

employed a linear activation function to output the
predicted MMSE score.
 2.3. Model Training and Evaluation the pati

The model was trained using the Adam

optimizer with a learning rate of 0.0001, and then s

Mean Squ predicted MMSE score.
 2.3. Model Training and Evaluation the pation

optimizer with a learning rate of 0.0001, and when special Mean Squared Error (MSE) was used as the loss images

function Early stopping and ModelChec **2.3. Model Training and Evaluation**
The model was trained using the Adam
optimizer with a learning rate of 0.0001, and
Mean Squared Error (MSE) was used as the loss
function. Early stopping and ModelCheckpoint
callbacks w The model was trained using the Adam

optimizer with a learning rate of 0.0001, and

Mean Squared Error (MSE) was used as the loss

function. Early stopping and ModelCheckpoint

callbacks were applied to store the further
 Function. Early stopping and ModelCheckpoint
callbacks were applied to store the
best-performing model. The 10mm and combined
datasets were split 80-20 for training and testing. Mean Squared Error (MSE) was used as the loss
function. Early stopping and ModelCheckpoint
callbacks were applied to store the
best-performing model. The 10mm and combined
datasets were split 80-20 for training and testing tunction. Early stopping and ModelCheckpoint

callbacks were applied to store the

best-performing model. The 10mm and combined

datasets were split 80-20 for training and testing.

The performance of both models was eval callbacks were applied to store the
best-performing model. The 10mm and combined
datasets were split 80-20 for training and testing.
The performance of both models was evaluated
using MSE and Mean Absolute Error (MAE). The performance of both models was evaluated
using MSE and Mean Absolute Error (MAE).
3. Results
We developed and evaluated an MMSE score The performance of both models was evaluated

sing MSE and Mean Absolute Error (MAE).
 $\begin{array}{ccc}\n\text{H} & \text{H} \\
\text{H} & \text{H} \\
\text{H}$

using MSE and Mean Absolute Error (MAE).
3. **Results**
We developed and evaluated an MMSE score
prediction model for early diagnosis of [1] Sama
Alzheimer's disease by combining two different trajectorie **E**
 E

We developed and evaluated an MMSE score

prediction model for early diagnosis of

Alzheimer's disease by combining two different

MRI multi-slice configurations with metadata The

Scie 3. Hesuits

We developed and evaluated an MMSE score

prediction model for early diagnosis of

Alzheimer's disease by combining two different

MRI multi-slice configurations with metadata. The

model using central slices a We developed and evaluated an MMSE score
prediction model for early diagnosis of trajectori
Alzheimer's disease by combining two different
MRI multi-slice configurations with metadata. The
model using central slices at ±10 prediction model for early diagnosis of trajector
Alzheimer's disease by combining two different Scienti:
MRI multi-slice configurations with metadata. The
model using central slices at ± 10 mm from the Useful
midline (1 Alzheimer's disease by combining two different
MRI multi-slice configurations with metadata. The
model using central slices at ±10mm from the
midline (10mm model) achieved an MSE of 0.527
and an MAE of 0.509. The model usi

논문집(31권 2호)
±10mm and ±15mm (combined model) showed an
MSE of 0.849 and an MAE of 0.562 ± 10 mm and ± 15 mm (combined model) showed an MSE of 0.849 and an MAE of 0.562. 10 mm and ± 15 mm (combined model) showed an

ISE of 0.849 and an MAE of 0.562.

The 10mm model showed greater accuracy, with

nost residuals within $+1$ of the actual MMSE

 ± 10 mm and ± 15 mm (combined model) showed an
MSE of 0.849 and an MAE of 0.562.
The 10mm model showed greater accuracy, with
most residuals within ± 1 of the actual MMSE
scores. In contrast, the combined model had \pm 10mm and \pm 15mm (combined model) showed an
MSE of 0.849 and an MAE of 0.562.
The 10mm model showed greater accuracy, with
most residuals within \pm 1 of the actual MMSE
scores. In contrast, the combined model had la MSE of 0.849 and an MAE of 0.562.
The 10mm model showed greater accuracy, with
most residuals within ± 1 of the actual MMSE
scores. In contrast, the combined model had larger
errors, especially in lower MMSE scores.

Fig 1. $10mm(left)$ and combined $(right)$ model ig 1. I0mm(left) and combined(right) model
IMSE prediction at each visit
Conclusions
This study demonstrates the potential of
redicting MMSE scores using multi-slice MRI

MMSE prediction at each visit
 4. Conclusions

This study demonstrates MMSE prediction at each visit
 4. Conclusions

This study demonstrates the potential of

predicting MMSE scores using multi-slice MRI

images and metadata indicating the possibility of 4. Conclusions

This study demonstrates the potential of

predicting MMSE scores using multi-slice MRI

images and metadata, indicating the possibility of

early diagnosis and intervention for Alzbeimer's This study demonstrates the potential of predicting MMSE scores using multi-slice MRI images and metadata, indicating the possibility of early diagnosis and intervention for Alzheimer's This study demonstrates the potential of
predicting MMSE scores using multi-slice MRI
images and metadata, indicating the possibility of
early diagnosis and intervention for Alzheimer's
disease. The 10mm model showed more predicting MMSE scores using multi-slice MRI
images and metadata, indicating the possibility of
early diagnosis and intervention for Alzheimer's
disease. The 10mm model showed more stability
and consistency, especially at mages and metadata, indicating the possibility of
early diagnosis and intervention for Alzheimer's
disease. The 10mm model showed more stability
and consistency, especially at extreme MMSE
scores, while the combined model early diagnosis and intervention for Alzheimer's
disease. The 10mm model showed more stability
and consistency, especially at extreme MMSE
scores, while the combined model was more
accurate in the mid-range but had larger disease. The 10mm model showed more stability
and consistency, especially at extreme MMSE
scores, while the combined model was more
accurate in the mid-range but had larger errors
in specific areas, performing better for p and consistency, especially at extreme MMSE
scores, while the combined model was more
accurate in the mid-range but had larger errors
in specific areas, performing better for particular
patient groups. These findings sugge scores, while the combined model was more
accurate in the mid-range but had larger errors
in specific areas, performing better for particular
patient groups. These findings suggest that both
the patient's condition and the accurate in the mid-range but had larger errors
in specific areas, performing better for particular
patient groups. These findings suggest that both
the patient's condition and the balance between
consistency and precision in specific areas, performing better for particular
patient groups. These findings suggest that both
the patient's condition and the balance between
consistency and precision should be considered
when selecting a model. Me patient groups. These findings suggest that both
the patient's condition and the balance between
consistency and precision should be considered
when selecting a model. Metadata and MRI
images remain critical predictors of the patient's condition and the balance between
consistency and precision should be considered
when selecting a model. Metadata and MRI
images remain critical predictors of Alzheimer's
progression, and future studies will consistency and precision should be considered
when selecting a model. Metadata and MRI
images remain critical predictors of Alzheimer's
progression, and future studies will focus on
collaborating with clinicians to refine when selecting a model. Metadata and MRI
images remain critical predictors of Alzheimer's
progression, and future studies will focus on
collaborating with clinicians to refine datasets and
further improve model performance application.

본 논문은 과학기술정보통신부 대학디지털교육역량 강화사업의 지원을 통해 수행한 ICT멘토링 프로젝 트 결과물입니다. 본 논문은 과악기술성보농신무 내악니시틸교육역당
강화사업의 지원을 통해 수행한 ICT멘토링 프로젝
트 결과물입니다.
References
[1] Samaneh A. Mofrad, "Cognitive and MRI
trajectories for prediction of Alzheimer's disease"

References

상화사업의 지원을 통해 수행한 ICT멘토링 프로젝
트 결과물입니다.
References
[1] Samaneh A. Mofrad, "Cognitive and MRI
trajectories for prediction of Alzheimer's disease",
Scientific Beports 11 2122 2021 trajectories for prediction of Alzheimer's disease",
Scientific Reports, 11, 2122, 2021.
[2] Young Min Choe, "MMSE Subscale Scores as **Heterences**

[1] Samaneh A. Mofrad, "Cognitive and MRI

trajectories for prediction of Alzheimer's disease",

Scientific Reports, 11, 2122, 2021.

[2] Young Min Choe, "MMSE Subscale Scores as

Useful Predictors of AD Conv

Useful Predictors of AD Conversion in Mild trajectories for prediction of Alzheimer's disease ,
Scientific Reports, 11, 2122, 2021.
[2] Young Min Choe, "MMSE Subscale Scores as
Useful Predictors of AD Conversion in Mild
Cognitive Impairment", Neuropsychiatric Disea Scientific Reports, 11, 2122, 2021.
[2] Young Min Choe, "MMSE Subscale Scores as
Useful Predictors of AD Conversion in Mild
Cognitive Impairment", Neuropsychiatric Disease
and Treatment, v16, 1767 - 1775, 2020.