Acknowledgement
본 연구는 과학기술정보통신부 및 정보통신기획평가원의 ICT혁신인재4.0 사업의 연구결과로 수행되었음(IITP-2024-RS-2022-00156299)
References
- G. Zheng, X. Zang, N. Xu, H. Wei, Z. Yu, V. Gayah, et al., "Diagnosing reinforcement learning for traffic signal control," arXiv:1905.04716, 2019.
- S. Lai, Z. Xu, W. Zhang, H. Liu and H. Xiong, "Large language models as traffic signal control agents: Capacity and opportunity," arXiv:2312.16044, 2023.
- A. Pang, M. Wang, M. O. Pun, C. S. Chen, and X. Xiong, "iLLM-TSC: Integration reinforcement learning and large language model for traffic signal control policy improvement," arXiv:2407.06025, 2024.
- P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, P. Flotterod, R. Hilbrich, L. Lucken, J. Rummel, P. Wagner and E. Wiessner, "Microscopic traffic simulation using sumo," International Conference on Intelligent Transportation Systems (ITSC), 2018.
- H. Van Hasselt, A. Guez and D. Silver, "Deep reinforcement learning with double q-learning," AAAI Conference on Artificial Intelligence, 2016.
- Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot and N. Freitas, "Dueling network architectures for deep reinforcement learning," International Confrence on Machine Learning (ICML), 2016.