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요 약

With the widespread application of 5G technology, network traffic has increased unprecedentedly, whi
ch has a significant impact on network traffic management. Traditional network traffic prediction methods
rely on time series analysis of seasonal patterns, ignoring the inherent spatial correlation of network traff
ic. Graph convolutional networks (GCN) learn spatial correlations. By combining GCN with time series
models, spatiotemporal features can be captured simultaneously, thereby improving prediction accuracy. Thi
s paper introduces a new network traffic prediction model TSA-NTP based on the attention mechanism,
which aims to more effectively capture spatiotemporal features in complex network environments.

1. Introduction

With the rapid increase in the number of mobile devices
and connections globally, particularly with the widespread
adoption of 5G technology, global network traffic is
exhibiting unprecedented growth. Recent data indicates that
by 2023, 5G devices and connections will constitute 15% of
global mobile devices and connections, an increase from the
previously projected 10%. This trend has resulted in a sharp
rise in traffic between network devices, significantly
complicating network traffic management. Traditional
network traffic prediction methods predominantly rely on the
analysis of seasonal patterns and time-series characteristics.
[1]However, the nonlinearity and dynamic variability
exhibited by real-world network traffic present substantial
challenges to achieving high-precision predictions. [2] [3]

Network traffic prediction is typically regarded as a time-
series forecasting task, wherein historical network traffic data
is analyzed to develop a time-series model that predicts
future network traffic. The accuracy of network traffic
predictions has been enhanced with the development of local
statistical algorithms for time-series forecasting, such as
ARIMA. These models reduce prediction errors by capturing
the seasonal patterns inherent in the time series. However, as
the volume of data continues to grow and deep learning

methods are increasingly applied in various fields, methods
such as Recurrent Neural Networks (RNN) have shown
greater efficacy in extracting temporal features from traffic
flow sequences. [4]For instance, Convolutional Neural
Networks can automatically extract features from network
traffic data, resulting in improved predictive performance.

Despite these advancements, existing prediction methods
primarily emphasize the temporal dimension and often
overlook the spatial correlations present in network traffic.
Network traffic is exchanged between nodes at multiple sites
and traverses network links. Due to the adjacency inherent in
network topology, there is significant correlation in traffic
behavior between these links. For example, links adjacent to
congested links are more likely to be affected, leading to the
propagation of congestion. [5] As a result, traditional time-
series prediction models struggle to effectively leverage
network topology to capture spatial information when
forecasting traffic at network nodes.

To address this challenge and effectively capture the
spatial features of network traffic, GCN provide a powerful
solution. [6] GCN extend convolution operations to graph
structures, enabling the learning of correlations within non-
Euclidean spaces derived from network topology, thereby
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capturing the complex relationships between network links.
While time-series models excel at extracting temporal and
spatial features, combining these techniques with GCN
allows for the simultaneous capture of spatiotemporal
features in network traffic, thus enhancing both prediction
accuracy and robustness.

Moreover, with the growing success of Transformers in
the time-series domain, they have been incorporated into
network traffic prediction models to further improve
predictive accuracy. [7]

In this paper, we propose a novel attention-based network
traffic prediction model, TSA-NTP, which effectively
captures the spatiotemporal features of complex network
environments. We provide a detailed discussion on the
construction of a graph Laplacian matrix to characterize the
correlation between adjacent links within the network. We
also generate a network traffic matrix using NSFNET and
validate the performance of the proposed method through
experiments conducted under varying network conditions.
Our research not only offers a new perspective on traffic
prediction in complex network environments but also
provides theoretical support for the future deployment of AI-
based predictive automation technologies aimed at managing
and simplifying network operations across all domains.

2. Methods

In this study, we consider a network adjacency matrix �  ∈
��×� , where N represents the number of nodes in the
network. The historical network traffic data is represented as
X ∈ RT×N×F , where T is the number of time steps in the
historical network traffic, and F is the feature dimension. The
task of network traffic prediction is to predict future traffic
XPbased on the historical traffic XT.

First, we apply a linear layer to the historical traffic data to
project the time steps into a higher dimension. This step is
implemented as follows:

�� = ��1 + �1

where W1 is the weight matrix, and b1 is the bias term.
This step enhances the model's capability to represent the
temporal features.

Next, we employ a multi-layer Temporal Convolutional
Network (TCN) to further model the processed data. Each
layer is represented as:

��+1 = �� �� ����1� ��, ��, � + �� + ��
where ReLU is the activation function, Conv1D represents

the one-dimensional convolution operation, Wi is the
convolution kernel, and d is the dilation rate. After passing
through multiple convolutional layers, we obtain the final
TCN output:

���� = ��
The TCN module is designed to capture the temporal

dependencies in the historical traffic data, particularly in long
sequences.

To further leverage the network structure information, we
compute the graph Laplacian matrix L, which is defined as:

L = D − A
where A is the adjacency matrix representing the network

structure, and D is the degree matrix. To prevent gradient
explosion due to uneven degrees, we adopt the symmetrically
normalized graph Laplacian matrix, expressed as:

�� = � − �−1
2��−1

2

Next, we apply the Laplacian matrix to the feature matrix
and compute the query (Q), key (K), and value (V) matrices
for the attention mechanism:

��,�,� = ����（��������,�,� + ��,�,� + �1×1）

Where WQ,K,V are the parameter matrices, and �1×1
�

represents the result of H_L after a 1x1 convolution:

�1×1
� = � +

�=1

�

��� ⋅ �� �

The attention mechanism is computed as follows:

���� = Attention �, �, � = softmax
���

��
�

Finally, we perform residual connection and normalization
on the output of the attention mechanism and the TCN output:

���� = ��������� ���� + ����

(그림 1) 광고 사진.Figure 1: TSANTP model structure
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After the above processing, the resulting feature vector is
passed through a Multi-Layer Perceptron (MLP) to produce
the final prediction:

� = ��� ����� + ����

where the MLP is defined as:
��� � = ������ ��� + �� + ��

Thus, we obtain the final network traffic prediction result
Y.

To ensure the stability and generalization ability of the
model, we introduce residual connections and LayerNorm
layers in the network, which effectively prevent gradient
vanishing or explosion. Additionally, we employ appropriate
weight initialization and regularization techniques (such as
Dropout) to further improve the model's robustness.

3. Experimentation and Evaluation

The model is implemented using Pytorch-GPU 2.01 based
on Python 3.11 and is trained on a PC running Windows 11
Education WSL, equipped with an Intel(R) Core(TM) i7-
10700 CPU @ 2.90GHz, an Nvidia GeForce RTX 2060super
GPU, and 64 GB of memory.

We created a simulator using OMNeT++ and applied 200
different routing schemes on NSFNET. We then generated
50,000 traffic matrix samples to reflect various data flows
within the network. NSFNET was operational from the 1980s
to the early 1990s, connecting supercomputing centers and
universities in the United States. It consisted of 14 nodes and
42 directed links.We used MSE (Mean Squared Error) as the
evaluation metric, with the formula:

MSE =
1
n

i=1

n

yi − yi� 2�

BIGRU: BIGRU is a bidirectional GRU model that can
capture temporal dependency information from both the
forward and backward directions of the sequence.
BiLSTM: BiLSTM is a bidirectional LSTM model that

processes sequence data in both forward and backward
directions to capture global temporal dependencies.
STGCN: STGCN combines graph convolutional networks

and temporal convolutional networks to simultaneously
capture spatial and temporal dependencies in data. [8]
TGCN: TGCN combines graph convolutional networks

with time series models to capture spatial and temporal

correlations in data. [9]

Table 1:Performance comparison of TSANTP and oth
er models on NSFNET

Based on the comparative analysis of the data in the table,
TSANTP outperformed other models under different network
intensities and prediction lengths. When the network
intensity was 9 and the prediction length was 3, my model
achieved the lowest error of 0.101, whereas the errors for
BIGRU, BiLSTM, STGCN, and TGCN were 0.111, 0.118,
0.132, and 0.154, respectively. Similarly, under a network
intensity of 12 and a prediction length of 3, my model again
performed excellently with an error of 0.088, significantly
lower than other models. Additionally, regardless of whether
the network intensity was 15 or the prediction length was 6,
my model consistently maintained the lowest error,
demonstrating strong robustness and predictive capability.
This indicates that my model possesses superior
generalization ability and accuracy when handling tasks with
varying network intensities and prediction requirements,
making it suitable for practical applications.
We compared our model with four benchmark methods on

the NSFNET dataset. Table 1 shows the results of prediction
performance at network intensities of 9, 12, and 15, with
prediction steps of 3 and 6. As seen in Table 1, our TSANTP
achieved the best performance in terms of MAE (Mean
Absolute Error). When the network intensity was 9 and the
prediction length was 3, my model achieved the lowest error
of 0.101, whereas the errors for BIGRU, BiLSTM, STGCN,
and TGCN were 0.111, 0.118, 0.132, and 0.154, respectively.
Similarly, under a network intensity of 12 and a prediction
length of 3, my model again performed excellently with an
error of 0.088, significantly lower than other models.
Furthermore, regardless of whether the network intensity was
15 or the prediction length was 6, my model consistently
maintained the lowest error, demonstrating strong robustness
and predictive capability. It can also be observed that
traditional time series analysis methods yielded better results,
while models considering both temporal and spatial
correlations, such as STGCN and TGCN, were less effective.
This suggests that these methods have limited capacity in
modeling nonlinear and complex traffic data. Our TSANTP
employs an attention mechanism and has outperformed
previous state-of-the-art models, proving the advantages of
our model in combining spatiotemporal features in network
traffic prediction.

4. Conclusion

This study proposes a network traffic prediction model
(TSA-NTP) based on the attention mechanism, which can
effectively capture spatiotemporal characteristics in a
complex network environment, thereby improving the
accuracy and robustness of the prediction. Experimental
results show that TSA-NTP performs well under different
network strengths and prediction lengths, especially under
high network strength and long prediction length, the model

Model

Streng

th

leng

th
BIGRU BiLSTM STGCN TGCN TSANTP

9
3 0.111 0.118 0.132 0.154 0.101

6 0.113 0.118 0.129 0.139 0.102

12
3 0.105 0.109 0.109 0.143 0.088

6 0.106 0.109 0.112 0.143 0.084

15
3 0.121 0.124 0.131 0.162 0.107

6 0.121 0.124 0.133 0.165 0.109
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has the lowest error, showing superior generalization ability
and prediction performance. In contrast, traditional time
series analysis methods and models that only consider
spatiotemporal correlations do not perform as well as TSA-
NTP in processing nonlinear and complex traffic data. This
shows that the model proposed in this study not only
provides theoretical support for artificial intelligence-based
prediction automation technology, but also has the potential
to be widely used in actual network operation and
management.
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